

MALAYSIA

FOURTH BIENNIAL UPDATE
REPORT
UNDER THE UNITED NATIONS
FRAMEWORK CONVENTION ON
CLIMATE CHANGE

MALAYSIA

FOURTH BIENNAL UPDATE REPORT UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

CONTENTS

CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF TABLES IN THE TECHNICAL ANNEX	vii
FOREWORD	
EXECUTIVE SUMMARY	
1. NATIONAL CIRCUMSTANCES	
1.1 Introduction	
1.2 Geography: Location and Topography	1
1.3 Governance and Climate Change	
1.4 Climate	
1.4.1 Annual Temperature Trends for Malaysia	
1.4.2 Annual Rainfall Distribution	
1.5 Forest and Biodiversity	
1.5.1 Forests	
1.6 Biodiversity	
1.7 Water Resources	
1.8 National Physical Planning	
1.9 Population	
1.9.1 Population and Population Density	
1.9.2 Urbanisation	
1.9.3 Age Distribution	
1.9.4 Life Expectancy	
1.10 Economy	
1.10.1 Gross Domestic Product and Gross National Income	
1.10.2 International Trade	
1.10.3 Unemployment	
1.11 Energy	
1.11.1 Policies	
1.11.2 Energy Balance	
1.11.3 Renewable Energy	
1.12 Transport	
1.12.1 Roads	
1.12.2 Motor-vehicle	
1.12.3 Urban Rail Transit	
1.12.4 Inter-city Railway Statistics	
1.12.5 Stage Bus Services	
1.12.6 Air Traffic Statistics	
1.13 Agriculture	
1.13.1 Agricultural Crops	
1.13.2 Livestock	∠4

	1.13.3 Fisheries and Aquaculture	. 24
	1.14 Solid Waste	. 25
	1.15 Institutional Arrangements	. 26
	1.15.1 Policy Making	. 26
	1.15.2 Development Planning and Implementation	. 27
	1.16 Guidance and Reporting	
	1.16.1 The National Steering Committee on Climate Change (NSC	. 30
	1.16.2 The National Steering Committee and Technical Work Committee for REDD Plus	ing
	1.16.3 The National Committee on Clean Development Mechanism	31
	1.17 Summary of Key Statistics	
2.	GHG INVENTORY	
	2.1 Background, Cross-Cutting Information and Institutional Arrangem	ent
		. 33
	2.2 Methods	. 34
	2.2.1 Methodology and Parameters	. 34
	2.2.2 Description of Data Sources and Assumptions	. 36
	2.2.3 Archiving and Documentation	
	2.2.4 Key Category Analysis	
	2.2.5 Uncertainty Assessment	
	2.2.6 Assessment of Completeness	
	2.2.7 QA/QC Process	
	2.3 GHG Emissions and Removals by Sector: 2019	
	2.3.1 Key Summary	
	2.3.2 Energy	
	2.3.3 IPPU	
	2.3.4 Agriculture	
	2.3.5 LULUCF	
	2.3.6 Waste	
	2.4 Sectoral Time Series: 1990 – 2019	
	2.4.1 Key Summary	
	2.4.2 Energy	
	2.4.3 IPPU	
	2.4.4 Agriculture	
	2.4.6 Waste	
	2.4.7 Recalculation of Time Series	
	2.5 Key Category Analysis	
	2.6 Uncertainty Assessment	
	2.7 GHG Emission Indices	
	2.8 Improvement Plan	
3.	MITIGATION ACTIONS AND THEIR EFFECTS	
J .	3.1 Background, Cross-Cutting Information and Institutional Arrangem	
	2.1 Baokground, Crood Calling Information and Indicational Attackgon	

	3.1.1	Monitoring and Evaluation of Policies and Measur	
	0.4.0	QA/QC Process	
		Methodology and Assumptions	
	_	ation Action Assessment	
		Key Summary	
		Details of Mitigation Actions	
		ational Market Mechanisms	
		Clean Development Mechanism	
		Voluntary Carbon Market	
		vement Plan	
4.	LEVEL O	F SUPPORT RECEIVED, CONSTRAINTS, GAPS A	ND NEEDS
	70		
		uction	
	4.2 Level	of Support Received	70
	4.2.1	Global Environment Facility	70
	4.2.2	Green Climate Fund (GCF)	71
	4.2.3	Multilateral and Bilateral Funding and Support	71
	4.2.4	Other Capacity Building Assistance	73
	4.3 Const	traints, Gaps and Needs	73
TEC	HNICAL A	NNEX	86
UNIT	S		293
CHE	MICAL EL	.EMENTS	294
GAS	ES		294
CON	VERSION	TABLE	294
LIST	OF ACRO	ONYMS	295
ACK	NOWLED	GEMENTS	300

LIST OF FIGURES

Figure 1.1:	Map of Malaysia
Figure 1.2:	Annual Temperature Trend: Peninsular Malaysia, Sabah and Sarawak
Figure 1.3:	Highest Daily Maximum Temperature for Peninsular Malaysia, Sabah and Sarawak
Figure 1.4:	Lowest Daily Minimum Temperature for Peninsular Malaysia, Sabah and Sarawak
Figure 1.5:	Annual Rainfall Trend in Peninsular Malaysia, Sabah and Sarawak
Figure 1.6:	Sectoral contribution share to GDP for 2005 and 2019
Figure 1.7:	Primary Energy Supply Breakdown for 2017, 2018 and 2019
Figure 1.8:	Trends in GDP, Primary Energy Supply and Final Energy Consumption
Figure 1.9:	Trends in Final Energy Consumption per capita and GDP per capita
Figure 1.10:	Institutional Arrangement and Thematic Working Groups for Climate Change
Figure 2.1:	Schematic Diagram showing Quality Assurance and Quality Control Arrangement for Greenhouse Gas Inventory
Figure 2.2:	Emissions Time Series from 1990 to 2019
Figure 2.3:	Emissions Time Series from 1990 to 2019 for Energy Sector
Figure 2.4:	Emissions Time Series from 1990 to 2019 for Industrial Processes and Product Use Sector
Figure 2.5:	Emissions Time Series from 1990 to 2019 for Agriculture Sector
Figure 2.6:	Emission Time Series from 1990 to 2019 for LULUCF Sector
Figure 2.7:	Emissions Time Series from 1990 to 2019 for Waste Sector
Figure 2.8:	Comparison of the energy sector time-series analysis of CO ₂ emission for the Reference and Sectoral approaches (1990-2019)
Figure 2.9:	Comparison of net total LULUCF emissions estimated between BUR3 and BUR4
Figure 3.1:	Schematic Diagram showing Quality Assurance and Quality Control Arrangement for the Estimation of GHG emission Reductions from Mitigation Actions

LIST OF TABLES

Table 1.1:	Total Forested Areas
Table 1.2:	Summary of Malaysia's Overall Biodiversity Richness
Table 1.3:	Overview of Ecosystems
Table 1.4:	Population and Population Density
Table 1.5:	Urbanisation Rate by State
Table 1.6:	Population by Age Group
Table 1.7:	Summary of Average Life Expectancy at Birth
Table 1.8:	Summary of Healthcare Facilities
Table 1.9:	GDP and GNI at Current and Constant Prices
Table 1.10:	Summary of Malaysia's Annual Trade
Table 1.11:	Unemployment Rate
Table 1.12:	Primary Energy Supply Breakdown in selected years
Table 1.13:	Final energy consumption by sector
Table 1.14:	Cumulative Installed Capacities of Grid-connected FiT Renewable Energy Projects
Table 1.15:	Annual Power Generation of Commissioned FiT Renewable Energy Installations
Table 1.16:	Length of Roads
Table 1.17:	Motor-Vehicle Registration
Table 1.18:	Total Ridership of Rail Transit and Commuter Trains
Table 1.19:	Railway statistics for Peninsular Malaysia
Table 1.20:	Stage Bus Annual Ridership in Selected Capital Cities
Table 1.21:	Yearly Total Number of Domestic and International Passengers Handled by Airports
Table 1.22:	Yearly Total Domestic and International Cargo Handled by Airports
Table 1.23:	Planted Areas of Major Agricultural Crops
Table 1.24:	Selected livestock populations
Table 1.25:	Landings of Marine Fish
Table 1.26:	Aquaculture production – Brackish and Coastal Areas
Table 1.27:	Average Waste Generations Per Day in 2007 and 2012

Table 1.28: Number of Landfills in Malaysia in 2019 Table 1.29: Solid Waste Composition Table 1.30: Coordinating Ministries and Their Respective Agencies Responsible for Climate Actions Table 1.31: Key Statistics for 2005 and 2019 Table 2.1: Land Use Definition Table 2.2: Global Warming Potential Used Table 2.3: QC Procedures Undertaken in Developing the National Greenhouse Gas Inventory Table 2.4: Summary of GHG Inventory for 2019 Table 2.5: Summary of Total GHG Emissions for Energy Sector in 2019 Table 2.6: Summary of Total GHG Emissions for IPPU Sector in 2019 Table 2.7: Summary of Total GHG Emissions for Agriculture Sector in 2019 Table 2.8: Summary of Total GHG Emissions for LULUCF Sector in 2019 Table 2.9: Summary of Total GHG Emissions for Waste Sector in 2019 GHG Emissions for the Years 1994, 2000, 2005, 2011, 2014, 2016 and Table 2.10: 2019 Table 2.11: Estimated Uncertainty of 2019 Greenhouse Gas Inventory Table 2.12: Greenhouse Gas Emission Indices for Malaysia Table 3.1: QC Procedures Undertaken in the Mitigation Assessment Table 3.2: Summary of Emission Reductions Achieved in 2017, 2018, and 2019 Total commercial harvest: 2005 and 2017 - 2019 Table 3.3: Table 4.1: Summary of Global Environment Facility Funding on Climate Change Activities to Malaysia Table 4.2: Financial Support Received from Various Sources Summary of Needs for GHG Inventory Improvement for Key Emitting Table 4.3: Sectors Table 4.4: Summary of Needs for Mitigation Actions in Energy, IPPU, Waste, Forestry and Agriculture Sectors Table 4.5: Summary of Needs for Adaptation in Various Sectors

LIST OF TABLES IN THE TECHNICAL ANNEX

Table A - 1:	Methodological Tiers and Type of Emission Factors
Table A - 2:	Summary of Emission Factors Used
Table A - 3:	Summary of Assumptions and Activity Data Sources
Table A - 4:	Comparison of Emissions and Removals by Sector between BUR3 and BUR4
Table A - 5:	Comparison of Emissions and Removals by Gas between BUR3 and BUR4
Table A - 6:	Comparison of Reference and Sectoral Approaches of CO ₂ Estimates between BUR3 and BUR4
Table A - 7:	Short Summary Table for GHG Inventory Year 2019
Table A - 8:	Summary Table for GHG Inventory Year 2019
Table A - 9:	Energy Sectoral Table for GHG Inventory Year 2019
Table A - 10:	IPPU Sectoral Table for GHG Inventory Year 2019
Table A - 11:	AFOLU Sectoral Table for GHG Inventory Year 2019
Table A - 12:	Waste Sectoral Table for GHG Inventory Year 2019
Table A - 13a:	Energy Background Table for GHG Inventory Year 2019 - 1A1-1A2
Table A - 13b:	Energy Background Table for GHG Inventory Year 2019 - 1A3-1A5
Table A - 13c:	Energy Background Table for GHG Inventory Year 2019 - 1B
Table A - 13d(i):	Energy Background Table for GHG Inventory Year 2019 - 1C CO_2 Transport, Injection and Storage
Table A - 13d(ii):	Energy Background Table for GHG Inventory Year 2019 - 1C CO ₂ Transport, Injection and Storage – Overview
Table A - 13e:	Energy Background Table for GHG Inventory Year 2019 - Reference Approach
Table A - 14a:	IPPU Background Table for GHG Inventory Year 2019 - 2A Mineral Industry, 2B (2B1-2B8, 2B10) Chemical Industry - CO2, CH4 and N2O
Table A - 14b:	IPPU Background Table for GHG Inventory Year 2019 - 2B (2B9 - 2B10) Chemical Industry, HFCs, PFCs, SF $_{\rm 6}$ and other halogenated gases
Table A - 14c:	IPPU Background Table for GHG Inventory Year 2019- 2C Metal Industry CO_2,CH_4 and N_2O

Table A - 14d: IPPU Background Table for GHG Inventory Year 2019 - 2C (2C3, 2C4, 2C7) Metal Industry HFCs, PFCs, SF₆ and other halogenated gases Table A - 14e: IPPU Background Table for GHG Inventory Year 2019 - 2D Non-Energy Products from Fuels and Solvent Use CO₂, CH₄ and N₂O Table A - 14f: IPPU Background Table for GHG Inventory Year 2019 - 2E Electronics Industry HFCs, PFCs, SF₆ NF₃ and other halogenated gases Table A - 14g: IPPU Background Table for GHG Inventory Year 2019 - 2F Product Uses as Substitutes for Ozone Depleting Substances HFCs, PFCs and other halogenated gases Table A - 14h: IPPU Background Table or GHG Inventory Year 2019 - 2G (2G1, 2G2, 2G4) Other Product Manufacture and Use - PFCs, SF₆ and other halogenated gases F Table A - 14i: IPPU Background Table for GHG Inventory Year 2019 - 2G (2G3, 2G4) Other Product Manufacture and Use - N2O, CO2, CH4 IPPU Background Table for GHG Inventory Year 2019 - 2H Other Table A - 14j: Table A - 14k: IPPU Background Table for GHG Inventory Year 2019 -Greenhouse gases without CO₂ equivalent conversion factors IPPU Background Table for GHG Inventory Year 2019 - Allocation Table A - 14l: of CO₂ emissions from Non-Energy Use of fossil fuels: IPPU and other sectors Table A - 15a: AFOLU Background Table for GHG Inventory Year 2019 - 3A1-3A2 Agriculture/Livestock Table A - 15b: AFOLU Background Table for GHG Inventory Year 2019 - 3B Carbon stock changes in FOLU Table A - 15c: AFOLU Background Table for GHG Inventory Year 2019 -Emissions in Wetlands (3B4) Table A - 15d: AFOLU Background Table for GHG Inventory Year 2019 - Biomass Burning (3C1) Table A - 15e: AFOLU Background Table for GHG Inventory Year 2019 - CO2 Emission form Liming (3C2) Table A - 15f: AFOLU Background Table for GHG Inventory Year 2019 - CO2 Emission from Urea Fertilisation (3C3) AFOLU Background Table for GHG Inventory Year 2019 - Direct Table A - 15q: N₂O Emission from Managed Soils (3C4) Table A - 15h: AFOLU Background Table for GHG Inventory Year 2019 - Indirect N₂O Emission from Managed Soils and Manure Management (3C4 and 3C6)

Table A - 15i: AFOLU Background Table for GHG Inventory Year 2019 - Non-CO₂ GHG Emission Not Included Elsewhere (3C7) Table A - 15j: AFOLU Background Table for GHG Inventory Year 2019 -Harvested Wood Products (3D1) - Annual Carbon HWP Contribution to Total AFOLU CO2 Removal and Emission and **Background Information** Table A - 16a: Waste Background Table for GHG Inventory Year 2019 - CO₂, CH₄, N₂O Emissions Table A - 16b: Waste Background Table for GHG Inventory Year 2019 - CH₄ Recovery Table A - 16c: Waste Background Table: Long-term storage of carbon Information **Items** Table A - 17: Cross Sectoral Table for GHG Inventory Year 2019 - Indirect Emission of N₂O Table A - 18: Trends of CO₂ (Gigagrams) Table A - 19: Trends of CH₄ (Gigagrams) Table A - 20: Trends of N₂O (Gigagrams) Table A - 21: Trends of HFCs (CO2 equivalents Gigagrams) Table A - 22: Trends of PFCs (CO₂ equivalents Gigagrams) Table A - 23: Trends of SF₆ (CO₂ equivalents Gigagrams) Table A - 24: Trends of Other Gases (NF₃) (CO₂ equivalents Gigagrams) Table A - 25a: Approach 1 Level Assessment for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Table A - 25b: Approach 1 Level Assessment for Greenhouse Gas Inventory Year 2019 - Including LULUCF Table A - 26a: Approach 1 Trend Assessment for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Table A - 26b: Approach 1 Trend Assessment for Greenhouse Gas Inventory Year 2019 - Including LULUCF Table A - 27a: Approach 1 Uncertainty Analysis for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Table A - 27b: Approach 1 Uncertainty Analysis for Greenhouse Gas Inventory Year 2019 - Including LULUCF Table B - 1: Details on the Methodology and Assumptions for the Quantification of Sectoral Mitigation Actions Table B - 2: **Detailed Description of Mitigation Actions** Table B - 3: Details of Key Initiatives and Programmes under NEEAP and Breakdown of its GHG Emission Reduction Achievement

- Table B 4: Distribution of Clean Development Mechanism Project Activities by Project Type
- Table B 5: Distribution of Voluntary Carbon Market Project Activities by Project Type

FOREWORD

Malaysia is pleased to submit our Fourth Biennial Update Report (BUR4) under the United Nations Framework Convention on Climate Change (UNFCCC). The document among others, outlines the latest information on the anthropogenic GHG emission and removal estimations in four sectors, namely energy; Industrial Processes and Product Used (IPPU); Agriculture, Forestry and Other Land Use (AFOLU), and waste up to the year 2019. The report also covers a wider range of climate change mitigation actions compared to BUR3 and the support needed and received to implement its climate actions.

Although Malaysia's contribution to global anthropogenic GHG emissions is small, Malaysia is highly committed to supporting the call for enhanced climate actions. Thus, Malaysia's updated Nationally Determined Contribution (NDC) submitted in 2021 has reinforced the earlier NDC submission in 2016 and sets an unconditional target of 45% reduction in carbon intensity against GDP below 2005 levels, to be achieved in 2030. Malaysia will continue to promote the strong linkages between climate change and sustainable development whilst mainstreaming climate change into the national development agenda. We have successfully implemented mitigation actions across all sectors but a lot more is required to fully realise the NDC that the country has set under the Paris Agreement. In addition, Malaysia also aspires to achieve net-zero emission as early as 2050. In this regard, the information in this report also will help us in the preparation of our Long-Term Low Greenhouse Gas Emission Development Strategies and in our national policy planning.

As this document informs the global community on Malaysia's GHG emissions and removals and its climate change mitigation actions in several sectors such as energy, forestry, transport, industry, agriculture and waste, the Ministry has also intensified its efforts to enhance the transparency, accuracy, completeness, comparability and consistency of the information contained in our final BUR. This is part of its transition efforts to the Enhanced Transparency Framework referred to in Article 13 of the Paris Agreement.

The preparation of this report would not have been possible without the cooperation and commitment of numerous experts and stakeholders and the provision of valuable data from government ministries, agencies, research organisations, corporations, industry associations, universities and non-governmental organisations. I would like to take this opportunity to express my sincere gratitude to them, the National and Technical Steering Committees on Climate Change and the Technical and Sub-Working Groups for their hard work and dedication. I would also like to take this opportunity to thank the UNFCCC, Global Environment Facility (GEF) and United Nations Development Programme (UNDP) for facilitating the preparation of this report.

We look forward to a continued cooperation to ensure that Malaysia will be able to fulfil its obligation under the Paris Agreement.

YB TUAN NIK MAZIYII BIN NIK AHMAD

Minister of Natural Resources, Environment and Climate Change

EXECUTIVE SUMMARY

Introduction

Malaysia's Fourth Biennial Update Report is developed according to the United Nations Framework on Climate Change (UNFCCC) Decision 2/CP.17. The report provides the updated information reported in the Third Biennial Update Report on national circumstances, greenhouse gas (GHG) inventory, progress in mitigation policies and actions, as well as on support received and needs.

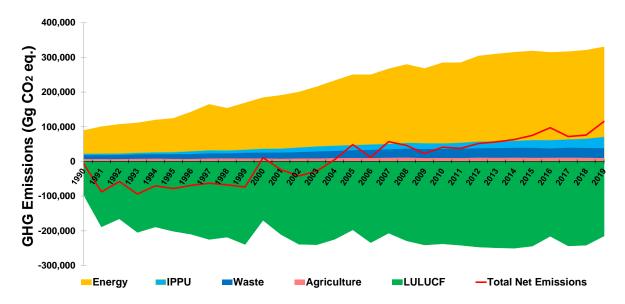
1. National Circumstances

Malaysia has an equatorial climate with increasing temperature trends of 0.13 °C to 0.24 °C per decade. Rainfall distribution in Malaysia is influenced by topography and monsoon winds which can cause abundant annual rainfall that averages about 2,000 mm to 4,000 mm. Malaysia has consistently maintained more than 50% of its landmass as forest following its voluntary pledge at the Earth Summit in 1992. In 2019, 54.9% of the total land area of Malaysia was under forest cover. Terrestrial biodiversity is concentrated within these forests and the country is considered as one of the world's mega-diverse countries.

Malaysia's population was 32.5 million in 2019. Its GDP (constant 2015 price) was RM1,424.3 billion on the same year, with contributions from services (58.3%), manufacturing (22.5%), mining and quarrying (7.3%), agriculture, livestock, forestry and fishing (7.2%), and construction (4.7%). Malaysia's medium-term planning covers five years development plans (such as the 11th Malaysia Plan) and sets the economic growth targets as well as the allocation ceiling for the public sector development programme. In addition, it also outlines the role of the private sector.

The energy sector is anticipated to strengthen access to affordable, reliable and sustainable energy with the introduction of new policies focusing on new low carbon energy-related sectors. Such direction also supports the goal of reducing dependence on petroleum-based revenue and commodity trade whilst enhancing the resilience of the country's fiscal and economic position in the process. (Information provided on the National Circumstances Chapter reports up to the year 2019 where published information are available).

In December 2022 when this report was submitted, there was a change in the national focal point to the UNFCCC, from the Ministry of Environment and Water to the Ministry of Natural Resources, Environment and Climate Change. The changes made to the institutional arrangement of reporting will be reflected in the subsequent report.


2. National Greenhouse Gas Inventory

The summary of Malaysia's GHG inventory in 2019 is as follows:

Sector	GHG Emission/Removal (Gg CO ₂ eq.)
Energy	259,326.11
IPPU	32,853.80
AFOLU-Agriculture	9,921.71
AFOLU-LULUCF	-214,714.54
Waste	28,256.59
Total (Excluding LULUCF)	330,358.21
Total (Including LULUCF)	115,643.68

In 2019, the energy sector remained as the largest contributor of emissions where it accounted for 78% of the total emissions. This is followed by the IPPU and the waste sectors, both contributed to about 10% and 9% of the total emissions respectively. Meanwhile, the agriculture sector contributed the lowest emissions at 3%. The total GHG emissions recorded that year was 330,358.21 Gg CO₂ eq. Taking into account the LULUCF sector which shows a net sink of -214,714.54 Gg CO₂ eq., Malaysia's net GHG emissions was 115,643.68 Gg CO₂ eq.

The GHG emission time series from 1990 to 2019 is shown below. As part of the efforts to improve the GHG estimations to the extent possible, recalculations were undertaken and reported in all the sectors as data became available. The key category analysis, uncertainty assessment and improvement plan are also reported in Chapter 2.

3. Mitigation Actions and Their Effects

The summary to the mitigation actions in 2017 to 2019 is shown below:

Sector	Sub-Sector	Mitigation Actions		Reductions A Gg CO ₂ eq.)	chieved
			2017	2018	2019
		RE Implementation through Feed-in Tariff mechanism	507.51	676.59	908.98
		 Biomass 	115.48	129.88	151.28
		 Biogas 	100.20	169.09	232.88
		 Small Hydropower 	47.26	44.99	170.39
		Solar Photovoltaic	244.57	332.64	354.42
	Renewable Energy	Other RE from Public and Private Licensees	233.19	378.19	292.33
		 Biomass 	225.00	312.10	243.94
		 Biogas 	7.96	9.37	39.59
		Solar Photovoltaic	0.23	56.71	8.80
		Net Energy Metering	-	5.54	5.53
Energy		Large Scale Solar	-	99.46	733.14
37		Hydropower Generation	9,316.10	8,348.13	8,194.71
		 Large Hydro 	9,299.34	8,236.92	8,065.23
		 Small Hydro 	16.76	111.21	129.48
	Energy Efficiency	National Energy Efficiency Action Plan (NEEAP)	1,284.18	2,144.26	3,164.66
		Rail based public transport	179.32	200.26	269.61
		Use of energy-efficient vehicles	119.23	114.71	140.15
	Transportation	Use of palm-based biodiesel in blended petroleum diesel	1,174.30	1,174.30	1,677.57
		Use of natural gas in vehicles	81.66	66.76	54.07
	Oil & Gas	Reduction of venting and flaring	2,940.00	3,760.00	4,910.00
		Paper recycling	3,937.76	4,398.87	4,746.94
	Waste	Biogas recovery from palm oil mill effluent	3,115.12	3,367.78	3,749.19
	IPPU	Material substitution in cement production	1,554.27	1,585.17	1,548.09
Agriculture		MyOrganic Certification Program	7.68	7.76	7.80

Sector	Sub-Sector	Mitigation Actions	Emission	Reductions / (Gg CO ₂ eq.)	Achieved
			2017	2018	2019
LULUCF		Reducing Deforestation, Sustainable Management of Forest and Conservation of Carbon Stocks	46,292.97	44,187.32	17,637.78
Total (without LULUCF)		24,450.33	26,327.76	30,402.76	
Total (with LULUCF)			70,743.30	70,515.08	48,040.54

The details of the mitigation actions in all the sectors are reported in Chapter 3. The GHG emission reductions from mitigation actions in the oil and gas industry (energy sector), cement industry (IPPU sector) and organic farming programme (agriculture sector) are quantified for the first time in this report.

4. Level of Support Received, Constraints, Gaps and Needs

Malaysia continues to face challenges in implementing its commitments to address climate change. This ranges from availability of finance in light of competing needs with other development programmes, recovery from the covid-19 pandemic, technology as well as technical and human capacity. Apart from the annual Government allocation to enhance a wide range of actions to address climate change, these actions are further complemented by the international communities in terms of capacity building, technical and financial support to fulfil the country's obligations under the Convention.

The Global Environment Facility (GEF) was the main source of funding for climate change activities. The support received has been primarily used to develop the country's institutional and technical capacity on reporting obligations to the UNFCCC as well as the implementation of mitigation actions. Sectors that have also received financial support for mitigation projects were transport, energy, forestry (including peatland), low carbon cities and community empowerment projects. The United Nations Development Programme (UNDP), the United Nations Industrial Development Organisation (UNIDO) and International Fund for Agricultural Development (IFAD) have facilitated these actions.

The updated information on the financial support received from various sources, and capacity building assistance since those reported in the Third BUR are also provided in this report. Similar to the previous BURs, Malaysia also reported its constraints, gaps and needs for fulfilling its reporting obligation and climate change actions. In terms of reporting to the UNFCCC, an improvement plan has been developed considering the recommendations provided during the International Consultation and Analysis process of the Third BUR, as well as recommendations of a number of workshops held within the past couple of years.

1. NATIONAL CIRCUMSTANCES

1.1 Introduction

This chapter provides information on Malaysia's national circumstances up to the year 2019 where relevant geography, natural resources, social and economic published statistics are available. It also communicates the status of key climate-related sectors and their respective policies and strategic measures.

1.2 Geography: Location and Topography

Malaysia lies between 0° 51' N and 7° 33' N, and 98° 01' E and 119° 30' E and is located in the Southeast Asia region. It has a land area of 330,241 km² with about 8,840 km of coastline and over 879 islands. It consists of thirteen states and three Federal Territories. Eleven of the states and two of the Federal Territories (Kuala Lumpur and Putrajaya) are located in Peninsular Malaysia (Figure 1.1). The states of Sabah and Sarawak are located on the Borneo Island and are separated from Peninsular Malaysia by the South China Sea. The Federal Territory of Labuan with an area of 92 km² and with 81.5 km coastline is located off the coast of western Sabah.

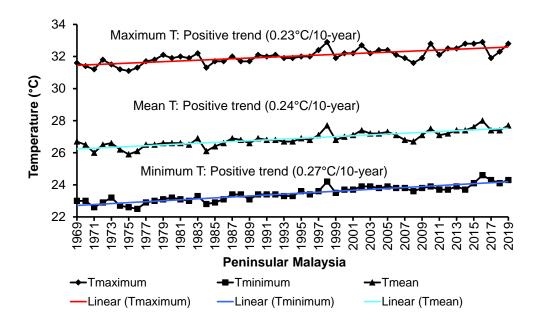
Figure 1.1: Map of Malaysia

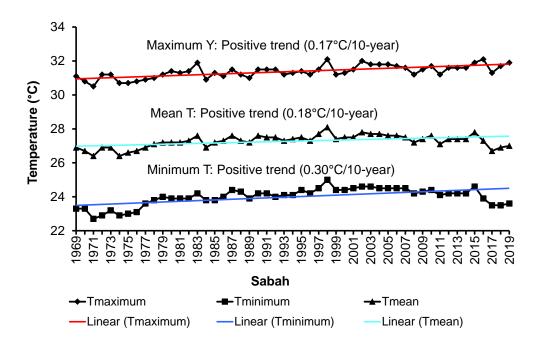
The topography of Peninsular Malaysia ranges from coastal plains to mountainous terrains. It has a land area of approximately 132,078 km² and a coast length of about 3,771.5 km. Its north-south extent is about 746 km and its maximum east-west width is about 315 km. It is also divided into the east and west coasts by the central mountainous region known as the Titiwangsa Range which extends from north to south for about 617 km in length with the highest point reaching 2,183 m above sea level. It is also the headwater of the Pahang River, which at 482 km is the longest river in Peninsular Malaysia and the third longest river in Malaysia.

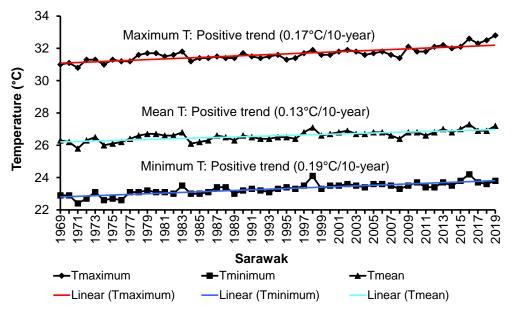
Sabah which lies on the north-eastern part of Borneo Island has a land area of approximately 73,621 km². Its coastline runs the length of approximately 3,753 km. Sabah's topography is primarily mountainous, especially in the western flank with undulating lowland basins in the eastern part. The Crocker Range divides the western coastal plains from the hinterland of Sabah. At 4,095 m above sea level, Low's Peak on the Kinabalu plateau of the Crocker Range is the highest point in Malaysia. The Kinabatangan River is the longest river in Sabah at 568 km and is the second longest in Malaysia.

Sarawak has a land area of approximately 124,450 km² and lies on the north central and western part of Borneo Island. Sarawak's coastline is about 1,234 km. Its topography features coastal plains followed by a narrow belt of hills before sharply rising into a mountainous region towards the Kalimantan border with Indonesia. Mount Murud at 2,422 m is the highest mountain in Sarawak. The second highest peak Mount Mulu (2,377m) has the largest natural limestone cave system in the world. The Rajang River at 780 km is the longest river in Sarawak as well as in Malaysia.

1.3 Governance and Climate Change


The Government of Malaysia is led by a Prime Minister and a constitutional monarchy, which employs a Parliamentary system. It has three branches of government – the Executive, the Legislature and the Judiciary. Its legislative power is divided between its federal and state legislatures. The Malaysian Parliament is made up of His Majesty Yang di-Pertuan Agong, the Senate (Upper House) with 70 members and the House of Representatives (Lower House) with 222 members. Out of the 70 senators in the Senate, 44 are appointed by His Majesty Yang di-Pertuan Agong while 26 are elected by the State legislatures. The general election for the 222 members of the Lower House must be held every five years.


The federal legislature and the executive arm of the government have the responsibility for developing and implementing policies and drafting national laws to enable the country to fulfil its international obligations in addressing climate change. The Ministry of Environment and Water is the focal ministry for climate change. Nevertheless, the respective states have jurisdiction over the management of natural resources, especially land, forest and water.


1.4 Climate

1.4.1 Annual Temperature Trends for Malaysia

Malaysia has an equatorial climate with a uniform daily variation of temperatures throughout the year. The daily mean temperature lies between 26 °C and 28 °C. In the past 50 years, there has been a positive trend in temperature increase. Figure 1.2 shows the annual trends of temperature for Peninsular Malaysia, Sarawak and Sabah from 1970 to 2019 respectively. The surface mean temperature increased by 0.13 °C to 0.24 °C per decade. The surface maximum temperature increased by 0.17 °C to 0.23 °C per decade while minimum temperature increased by 0.19 °C to 0.30 °C per decade.

Source: Malaysian Meteorological Department

Figure 1.2: Annual Temperature Trend: Peninsular Malaysia, Sabah and Sarawak

Malaysia's climate can be characterised by two monsoons which are separated by two shorter inter-monsoon periods. North-eastern winds are strong during the boreal winter monsoon which usually occurs from November to March. The boreal summer monsoon occurs between May to September with south-westerly winds prevailing during this period. During inter-monsoonal periods, occurrence of heavy rain and thunderstorms in the late afternoons and evenings are relatively common.

The highest daily maximum and lowest daily minimum temperatures for each year from 1951 to 2019 according to data collected from the various meteorological stations across Malaysia are shown below in Figure 1.3 and Figure 1.4. The highest daily maximum temperature shows an increasing trend with the highest daily maximum temperature over in Peninsular Malaysia, followed by Sarawak and Sabah.

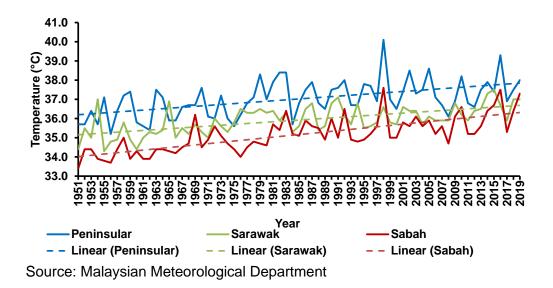


Figure 1.3: Highest Daily Maximum Temperature for Peninsular Malaysia, Sabah and Sarawak

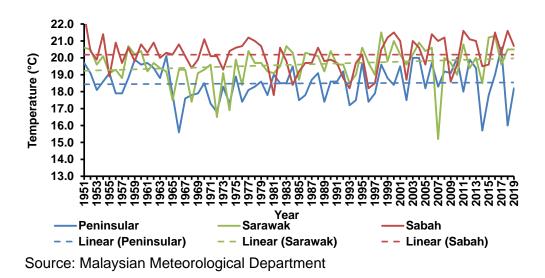
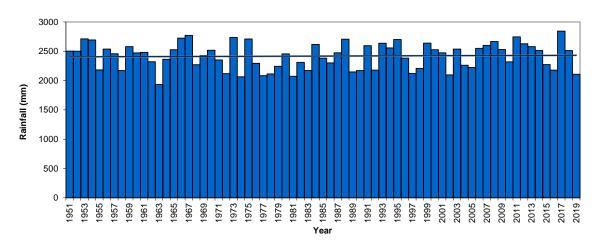
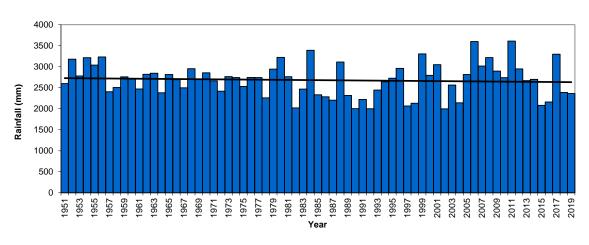
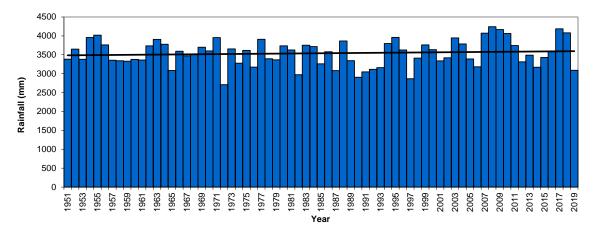



Figure 1.4: Lowest Daily Minimum Temperature for Peninsular Malaysia, Sabah and Sarawak


1.4.2 Annual Rainfall Distribution

Rainfall distribution in Malaysia is influenced by topography and monsoon winds. As a result, Malaysia has abundant annual rainfall that averages about 2,000 mm to 4,000 mm. During the northeast monsoon, the east coast of Peninsular Malaysia, northeast of Sabah and southern Sarawak sometimes experience spells of heavy rain lasting about three days, which can cause severe floodings. In contrast, the southwest monsoon will see lower rainfall. During the inter-monsoon periods, heavy rain from convective showers and thunderstorms occurs in the late afternoons and evenings. Figure 1.5 shows the annual rainfall for Peninsular Malaysia, Sabah and Sarawak from 1951 to 2019. The drier years are mainly because of strong El Niño and the Indian Ocean Dipole events.


Annual Rainfall Trend for Peninsular Malaysia

Annual Rainfall Trend for Sabah

Annual Rainfall Trend for Sarawak

Source: Malaysian Meteorological Department

Figure 1.5: Annual Rainfall Trend in Peninsular Malaysia, Sabah and Sarawak

1.5 Forest and Biodiversity

1.5.1 Forests

Malaysia's forests are comprised of complex ecosystems and are home to a wide range of species. Malaysia has consistently maintained more than 50% of its landmass as forest following its voluntary pledge at the Earth Summit in 1992. This includes Permanent Reserved Forests (PRFs), state land forests (SLF) and Totally Protected Areas (TPA/PA). In 2019, 18.14 million ha, or approximately 54.9% of the total land area of Malaysia was under forest cover. The remaining land area comprised of agricultural and commodity crops, settlements, wetlands and grasslands. Table 1.1 below presents a breakdown of the total forested areas in Malaysia according to the three regions.

Table 1.1: Total Forested Areas

Forested area (million ha)				
Year	Peninsular Malaysia	Sabah	Sarawak	Total
2005	5.83	4.36	7.62	17.82
2015	5.79	4.56	8.05	18.39
2016	5.77	4.56	7.91	18.24
2017	5.77	4.77	7.80	18.34
2018	5.76	4.77	7.75	18.27
2019	5.73	4.68	7.72	18.14

Source: Ministry of Energy and Natural Resources

1.6 Biodiversity

Malaysia is rich in biodiversity in terms of estimated species in the respective flora and fauna groups as shown in Table 1.2.

Table 1.2: Summary of Malaysia's Overall Biodiversity Richness

Group	Estimated Species
Mammals	306
Birds	742
Reptiles	567
Amphibians	242
Marine Fishes	1,619
Freshwater Fishes	449
Invertebrates	150,000
Vascular Plants	15,000
Fungi	>4,000
Mosses	522
Hard corals	612

Source: Sixth National Report (of Malaysia) to the Convention on Biological Diversity

Malaysia's terrestrial biodiversity is concentrated within tropical rainforests that extend from coastal plains to mountainous areas and wetlands, such as lakes and rivers. Marine biodiversity is primarily located among islands and coastal ecosystems, especially in mangrove/tidal mudflats, coral reefs and seagrass meadows. Agricultural biodiversity is conserved in plantations, rice fields, fruit orchards, and farms. Table 1.3 below represents an overview of different ecosystems across Malaysia.

Table 1.3: Overview of Ecosystems

Thematic Area	Ecosystem
Forest Biodiversity	 Lowland dipterocarp forest
	 Heath forest
	 Limestone forest
	 Mixed dipterocarp forest
	 Hill dipterocarp forest
	 Hill mixed dipterocarp forest
Mountain Biodiversity	Montane forest
	 Subalpine forest
Inland Waters Biodiversity	 Peat swamp forest
	Freshwater swamp forest
	Riparian forest
	 Rivers, ponds, lakes
Marine and Coastal Biodiversity	 Coastal hill dipterocarp forest
	Mangrove forests
	Mudflats
	Coral reef
	Sea grass
Agricultural Biodiversity	Plantations
	Rice fields
	 Fruit orchards and vegetable farms
	 Livestock rearing and aquaculture farms

Source: Sixth National Report (of Malaysia) to the Convention on Biological Diversity

1.7 Water Resources

Malaysia relies on rainfall as its main water source that feeds its 2,986 river basins of which 189 are major ones and to recharge its groundwater reservoirs. The country receives about 973 billion cm³ of water from rainfall annually according to the National Water Resources Study (2000-2050). From this, the total surface runoff is estimated to be 496 billion cm³ per year. On a yearly basis, about 414 billion cm³ return to the atmosphere through evapotranspiration process and 63 billion cm³ as groundwater recharge.

Rainfall is unevenly distributed with some states receiving more rain than others. High intensity and prolonged periods of rainfall results in flooding in low-lying and coastal areas where rivers are short and catchment areas are small. Areas with smaller water catchments are likely to be more susceptible to water stress in the future.

The National Water Resources Policy launched in 2012 under the 10th Malaysia Plan outlined clear directions and strategies for water resources management, including collaborative governance to ensure water security and sustainability. The 11th Malaysia Plan continued the policy direction and emphasised that stronger protection and conservation of water resources needs to be carried out. Alternative water supply initiatives such as rainwater harvesting, tube wells and gravity feed systems are being implemented as supplementary sources to serve remote areas.

1.8 National Physical Planning

For the period until 2020, national physical development in Peninsular Malaysia is guided by three physical planning documents, the National Physical Plan-3 (NPP-3), the Second National Urbanisation Policy (NUP-2) and the National Rural Physical Plan 2030 (NRPP 2030). Due to constitutional arrangements, the states of Sabah and Sarawak have autonomy in the development control process and are governed by separate planning systems. Thus, NPP-3, NUP-2 and NRPP 2030 only applies to Peninsular Malaysia.

The NPP-3 is the highest-ranking planning document in the national development framework which translates strategic and sectoral policies into spatial and physical dimensions. Emphasis is placed on sustainability and resilience towards climate change in three strategic directions:

- (a) Sustainable management of natural, food and heritage resources;
- (b) Holistic land use planning; and
- (c) Low carbon cities and sustainable infrastructure.

The three strategic directions are being implemented through 15 strategies and 44 actions. The 15 strategies are:

- (a) improving preservation and conservation of national ecological assets;
- (b) managing and controlling development in environmentally sensitive areas;
- (c) enhancing security and sustainability of water resources;
- (d) managing mineral resource exploration;
- (e) promoting food security;
- (f) strengthening protection and preservation of national archaeological and natural heritage sites;
- (g) optimising land use and availability;
- (h) managing natural disaster risk areas;
- (i) managing development growth and sprawl;
- (j) promoting integrated rural development;
- (k) creating low carbon cities development;
- (I) promoting use of sustainable energy sources;
- (m) implementing integrated water cycle management;
- (n) promoting green mobility; and
- (o) strengthening integrated and sustainable solid waste management.

The NUP-2 provides guidance on sustainable urban planning and development with an emphasis for balanced development physically, environmentally, socially and economically. The NRPP 2030 is the first spatial rural development document that outlines policy statements, strategies and implementation measures towards materialising the rural development vision.

1.9 Population

1.9.1 Population and Population Density

The total population of Malaysia in 2019 was 32.5 million. Malaysia's population has been growing quite steadily in the past 15 years. The population density of the country registered an increase from 79 person per km² in 2005 to 99 person per km² in 2019. Table 1.4 provides a summary of Malaysia's population and population density since 2005.

Table 1.4: Population and Population Density

Year	Population (million)	Population Density (population/km²)
2005	26.0	79
2015	31.2	94
2016	31.6	96
2017	32.0	97
2018	32.4	98
2019	32.5	99

Source: Department of Statistics Malaysia

1.9.2 Urbanisation

The national urbanisation rate grew from 51.4% in 1990 to 76.2% in 2019. Table 1.5 provides a summary of Malaysia's urbanisation rate by state.

Table 1.5: Urbanisation Rate by State

		Urbanisation Rate (%)								
State	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019
Johor	50.1	56.2	64.8	68.4	71.8	75.6	77.1	77.7	78.3	78.9
Kedah	32.9	35.6	39.1	51.4	64.7	68.0	68.6	70.9	71.6	72.3
Kelantan	33.0	33.5	33.5	37.8	42.3	47.0	47.9	48.7	49.7	50.6
Melaka	38.8	51.0	67.5	77.3	86.4	91.9	92.7	93.4	94.0	94.6
Negeri Sembilan	42.9	47.9	54.9	60.4	66.4	72.0	73.0	73.3	73.6	74.4
Pahang	31.5	35.5	42.0	46.2	50.4	55.1	56.0	56.0	56.9	57.9
Perak	53.9	56.1	59.0	64.3	69.7	74.4	75.3	75.4	75.5	75.8
Perlis	26.5	29.7	34.0	42.3	51.1	59.9	61.5	61.7	63.0	64.3
Pulau Pinang	75.2	77.3	79.7	85.2	90.9	93.9	94.4	94.6	95.0	95.3
Sabah	33.5	38.8	48.1	51.2	54.3	57.9	58.2	58.8	59.5	60.3
Sarawak	37.9	42.4	48.1	51.0	53.8	57.1	57.8	57.8	58.5	59.2

				Urba	nisatio	on Rate	e (%)			
State	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019
Selangor	75.9	82.1	87.7	89.7	91.3	93.0	93.3	93.3	93.3	93.4
Terengganu	44.1	46.3	49.4	54.0	59.1	63.4	64.3	65.0	65.7	66.4
Federal										
Territory of	100	100	100	100	100	100	100	100	100	100
Kuala	100	100	100	100	100	100	100	100	100	100
Lumpur										
Federal										
Territory of	-	64.2	76.3	79.5	82.9	84.5	84.7	84.8	84.9	83.7
Labuan										
Federal										
Territory of	-	-	-	-	100	100	100	100	100	100
Putrajaya										
Malaysia	51.4	56.0	62.0	66.5	71.0	74.3	74.8	75.2	75.6	76.2

Source: Department of Statistics Malaysia

1.9.3 Age Distribution

In 2019, 23.5% of the population was under 15 years old, 69.8% were between the ages of 15 and 64, and a smaller percentage of 6.7% were over 65 years old. Table 1.6 highlights the changing composition of ages within the Malaysian population.

Table 1.6: Population by Age Group

Year	Less than 15 years (%)	15 to 64 years (%)	65 years and above (%)
2005	30.9	64.6	4.4
2015	24.9	69.2	5.9
2016	24.5	69.5	6.0
2017	24.1	69.6	6.3
2018	23.8	69.7	6.5
2019	23.5	69.8	6.7

Source: Department of Statistics Malaysia

1.9.4 Life Expectancy

The average life expectancy at birth has increased marginally from 73.6 years in 2005 to 74.8 years in 2019. Female life expectancy has increased to 77.4 years in 2019 from 76.0 years in 2005 while male life expectancy increased marginally from 71.4 years in 2005 to 72.5 years in 2019. Table 1.7 shows a summary of the change in life expectancy at birth.

Table 1.7: Summary of Average Life Expectancy at Birth

Year	Female	Male	Overall
2005	76.0	71.4	73.6
2015	77.1	72.5	74.6
2016	77.0	72.1	74.4
2017	77.1	72.1	74.4
2018	77.2	72.3	74.6
2019	77.4	72.5	74.8

Source: Department of Statistics Malaysia

The health and wellbeing of the people are an essential part of an improved standard of living that Malaysia strives to achieve. In the mid-term review of the 11th Malaysia Plan (2016-2020), the Malaysian government set the goal of creating a sustainable healthcare system and the first step it took in that direction was with the introduction of the Malaysia National Health Policy (MNHP). This policy focuses on population health as well as the sustainability of the healthcare system.

The Ministry of Health (MOH) is the main provider of healthcare services. An extensive network of primary healthcare services is delivered by Government health facilities together with private medical and dental clinics. This network is supported by secondary and tertiary services provided by both the Government and private sector. Table 1.8 presents a summary of the health care facilities in the country for 2011, 2015, 2017 and 2019.

Table 1.8: Summary of Healthcare Facilities

	20	011	2	015	2017		2019	
Year	Number	Beds (Official)	Number	Beds (Official)	Number	Beds (Official)	Number	Beds (Official)
		Primary	Health Care	Facilities - N	linistry of H	ealth		
Health Clinics ^a	985	-	1,061	-	1,085	-	1,114	-
Rural Clinics	1,864	-	1,808	-	1,796	-	1,771	-
Mobile Health Clinics (Teams)	184	-	203	-	217	-	230	-
Flying Doctor Services	5 b	12 ^c	6 b	12 °	6 b	12 ^c	5 ^b	11 °
Standalone Dental Clinics	51	459 ^d	56	493 ^d	54	492 ^d	61	542 ^d
Dental Clinics in Health Clinics ^e	-	-	583	1,446 ^d	586	1,442 ^d	577	1,581 ^d
Dental Clinics in Hospitals	-	-	66	353 ^d	69	407 ^d	74	481 ^d

Number Beds Number Cofficial Cofficial Number Cofficial Number Cofficial Coffic		20	011	20	015	20	17	20	19
Clinics in Other Institutes	Year	Number		Number		Number		Number	
Other Institutes Company Com									
Institutes		_	_	16	17 d	20	17 d	21	21 ^d
School Dental Clinics Sub-total School Clinics Sub-total School Sc									
Dental Clinics									
Clinics									
Mobile		-	-	925	843 ^a	923	832 ^a	920	810 ª
Dental Clinics									
Clinics Sub-total 3,116 498 3,162 549 3,193 557 3,215 609		27	27 d	20	4.4 d	25	E2 d	24	Ee d
Sub-total 3,116 498 3,162 549 3,193 557 3,215 609		21	21 -	20	44 ~	33	55 -	34	26
Private Medical Clinics 6,589 - 7,146 - 7,571 - 7,988 -		3,116	498	3,162	549	3,193	557	3,215	609
Medical Clinics 6,589 - 7,146 - 7,571 - 7,988 - Private Dental Clinics 1,576 - 1,867 - 2,137 - 2,507 - Sub-total 8,165 - 9,013 - 9,708 - 10,495 - Secondary and Tertiary Services - Ministry of Health Hospitals 132 33,812 134 36,447 135 37,470 135 38,131 Special Medical Institutions 6 4,582 9 4,942 9 4,832 9 4,805 Nun-Ministry of Health Hospitals 8 3,322 9 3,698 10 3,892 10 4,052 Licensed Private Facilities Hospitals 220 13,568 183 12,963 240 15,566 18 52 Nursing Homes 14 362 16 539 240 15,566 21				Register	ed Private En	tities			
Clinics	Private								
Private	Medical	6,589	-	7,146	-	7,571	-	7,988	-
Dental Clinics									
Clinics Sub-total 8,165 - 9,013 - 9,708 - 10,495 -									
Sub-total 8,165 - 9,013 - 9,708 - 10,495 -		1,576	-	1,867	-	2,137	-	2,507	-
Secondary and Tertiary Services - Ministry of Health									
Hospitals 132 33,812 134 36,447 135 37,470 135 38,131	Sub-total	8,165				1		10,495	-
Special Medical 1			Secondary	y and Tertia	ry Services –	Ministry of	Health		
Medical Institutions 6 4,582 9 4,942 9 4,832 9 4,805 Sub-total 138 38394 143 41389 144 42302 144 42,936 Non-Ministry of Health Hospitals 8 3,322 9 3,698 10 3,892 10 4,052 Licensed Private Facilities Hospitals 220 13,568 183 12,963 240 15,566 18 52 Nursing Homes 14 362 16 539 240 15,566 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505		132	33,812	134	36,447	135	37,470	135	38,131
Institutions									
Sub-total 138 38394 143 41389 144 42302 144 42936 Non-Ministry of Health Licensed Private Facilities Licensed Private Facilities Maternity Homes 25 105 14 50 240 15,566 18 52 Nursing Homes 14 362 16 539 240 15,566 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505		6	4,582	9	4,942	9	4,832	9	4,805
Non-Ministry of Health									
Hospitals 8 3,322 9 3,698 10 3,892 10 4,052 Licensed Private Facilities Hospitals 220 13,568 183 12,963 208 16,469 Maternity Homes 25 105 14 50 240 15,566 18 52 Nursing Homes 14 362 16 539 240 15,566 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505	Sub-total	138	38394			I	42302	144	42,936
Licensed Private Facilities					inistry of Hea				
Hospitals 220 13,568 183 12,963 Maternity Homes 25 105 14 50 Nursing Homes 14 362 16 539 Hospice 4 38 3 22 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505	Hospitals	8	3,322	-	,		3,892	10	4,052
Maternity Homes 25 105 14 50 240 15,566 18 52 Nursing Homes 14 362 16 539 240 15,566 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505					d Private Faci	lities			
Homes 25 105 14 50 240 15,566 18 52 Nursing Homes 14 362 16 539 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505	Hospitals	220	13,568	183	12,963			208	16,469
Nursing Homes 14 362 16 539 21 775 Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505		25	105	14	50	040	45 500	18	52
Hospice 4 38 3 22 3 29 Sub-total 263 14,073 216 13,574 240 15,566 250 17,505		14	362	16	539	240	15,566	21	775
Sub-total 263 14,073 216 13,574 240 15,566 250 17,505		4	38	3	22			3	29
			14,073			240	15,566		17,505
					·				

Note:

Source: Health Facts 2012, 2016, 2018, 2020, Ministry of Health

^a Health clinics include Maternal and Child Health Clinics

^b Number of helicopters

[°] Number of teams of Air Land Force

^d Number of dental chairs

^e Includes dental clinics in Maternal and Child Health Clinics

1.10 Economy

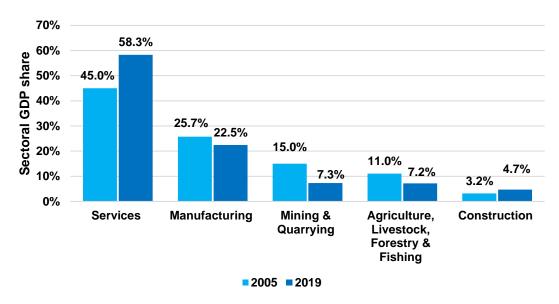

1.10.1 Gross Domestic Product and Gross National Income

Table 1.9 shows a summary of the GDP and GNI of Malaysia while Figure 1.6 shows the sectoral contributions to GDP in 2005 and 2019.

Table 1.9: GDP and GNI at Current and Constant Prices

		Gross Domestic Product (GDP)		Gross National Income (GNI)		GNI per capita
		RM B	illion		R	M
Year	Current Prices	Constant	Current Prices	Constant Prices (2015 = 100)	Constant Prices (2015 = 100)	Constant Prices (2015 = 100)
2005	543.578	729.851*	519.635	735.823*	28,022*	28,251*
2015	1,176.941	1,176.941	1,144.829	1,155.866	37,739	37,063
2016	1,249.698	1,229.312	1,215.105	1,211.301	38,861	38,292
2017	1,372.310	1,300.769	1,333.652	1,281.719	40,620	40,025
2018	1,447.760	1,363.766	1,402.677	1,335.058	42,115	41,228
2019	1,512.738	1,424.310	1,473.242	1,402.096	43,783	43,111

Sources: Department of Statistics Malaysia, *calculated by KASA

Note:

Contribution before adding import duties; GDP is at Constant Prices 2015 Source: Economics Planning Unit, Prime Minister's Department

Figure 1.6: Sectoral contribution share to GDP for 2005 and 2019

1.10.2 International Trade

Trade is an essential part of the Malaysian economy with Malaysia practising an open trade regime. In 2019, the Malaysian economy had a net balance of trade of RM145 billion, with exports totalling to RM995 billion and imports of RM849 billion. Table 1.10 shows Malaysia's annual trade for the selected years.

Table 1.10: Summary of Malaysia's Annual Trade

Year	(RM Million)						
rear	Gross Exports	Gross Imports	Total Trade	Balance of Trade			
2005	536,234	432,871	969,104	103,363			
2015	777,355	685,778	1,463,134	91,577			
2016	786,964	698,819	1,485,783	88,145			
2017	934,927	836,422	1,771,349	98,505			
2018	1,003,587	879,804	1,883,391	123,783			
2019	995,072	849,411	1,884,483	145,661			

Source: Economic Planning Unit, Prime Minister's Department

In 2019, manufactured goods formed the backbone of the export economy at 84.5% with electrical and electronic products accounting for 37.5% of the total export share. Primary industries goods made up 14.8% of export consisting mainly of palm oil and palm oil-based agriculture products (4.4%), liquified natural gas (4.3%) and crude petroleum (2.6%). Import-wise, intermediate goods made up 55%, followed by capital goods at 11.8% and consumption goods at 8.7%.

1.10.3 Unemployment

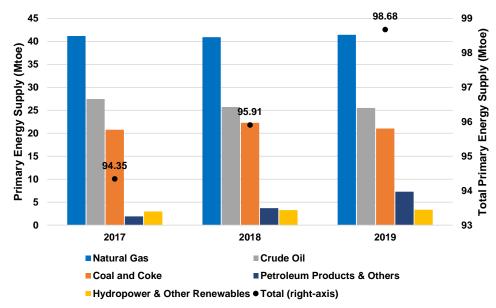
The unemployment rate decreased marginally from 3.5% in 2005 to 3.3% in 2019. Table 1.11 shows the changes in unemployment rate from 2005.

Table 1.11: Unemployment Rate

Year	Unemployment Rate (%)
2005	3.5
2015	3.1
2016	3.4
2017	3.4
2018	3.3
2019	3.3

Source: Department of Statistics Malaysia

1.11 Energy


1.11.1 Policies

The energy sector is anticipated to strengthen access to affordable, reliable and sustainable energy, in line with Sustainable Development Goal 7 of the 2030 Agenda for Sustainable Development. The National Energy Policy 2022 – 2040, introduced in September 2022 underscores the commitment towards energy transformation with a focus to shift from fossil-based systems of production and consumption to renewable

energy. The policy aligns the energy sector to the country's long-term plan of Shared Prosperity Vision 2030 and its five Key Economic Growth Activities which are directly related to the energy sector (such as sustainable mobility, renewable energy and green economy). The policy aims to spur new energy-related sectors which will also support the goal of reducing dependence on petroleum-based revenue and commodity trade, enhancing the resilience of the country's fiscal and economic position in the process. The policy also sets the directive towards Low Carbon Nation Aspiration 2040 from the improvement of primary energy mix intensity through increased penetration of clean and renewable sources of energy. This is in line with the Government's target to reach 31% of RE installed capacity mix by 2025.

1.11.2 Energy Balance

Figure 1.7 shows a summary of Malaysia's primary energy supply in 2019 and Table 1.12 shows the breakdown in selected years from 2005 to 2019.

Source: National Energy Balance 2019, Energy Commission

Figure 1.7: Primary Energy Supply Breakdown for 2017, 2018 and 2019

Table 1.12: Primary Energy Supply Breakdown in selected years

		Primary Energy Supply Breakdown (ktoe)						
Year	Natural Gas	Crude Oil and Petroleum Products	Coal and Coke	Renewable Energy	Total			
2005	33,913	24,096	6,889	446	65,344			
2015	41,853	29,165	17,406	2,017	90,441			
2016	41,257	31,327	18,744	2,420	93,748			
2017	41,200	29,380	20,771	2,994	94,345			
2018	40,939	29,429	22,280	3,261	95,909			
2019	41,461	32,813	21,057	3,349	98,680			

Source: National Energy Balance 2019

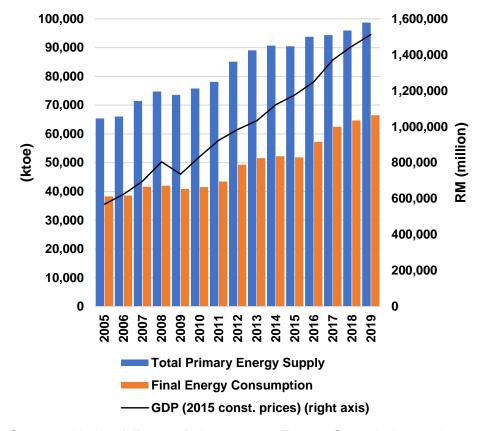
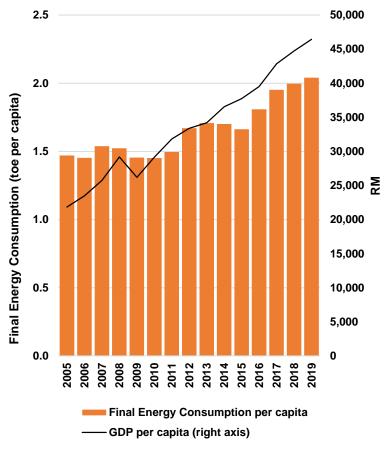

Malaysia's final energy consumption according to sectors is shown in Table 1.13 while the trends in GDP, primary energy supply and final energy consumption is shown in Figure 1.8. In terms of GDP per capita and final energy consumption per capita, the trends are shown in Figure 1.9.

Table 1.13: Final energy consumption by sector

		Final Energy Consumption (ktoe)							
Year	Transport	Industry	Residential and Commercial	Non- energy use	Agriculture	Total			
2005	15,293	15,583	5,134	2,173	101	38,284			
2015	23,435	13,971	7,600	5,928	895	51,829			
2016	24,004	16,019	8,051	8,729	415	57,218			
2017	24,039	17,463	7,796	12,517	674	62,489			
2018	23,555	19,046	7,773	13,262	1,021	64,657			
2019	25,004	18,921	8,000	13,631	927	66,483			


Note: Transport sector final energy use included international civil aviation fuel.

Source: National Energy Balance 2019

Sources: National Energy Balance 2019 Energy Commission and Economic Planning Unit Prime Minister's Department

Figure 1.8: Trends in GDP, Primary Energy Supply and Final Energy Consumption

Sources: National Energy Balance 2019, Energy Commission and Department of Statistics

Figure 1.9: Trends in Final Energy Consumption per capita and GDP per capita 1.11.3 Renewable Energy

BUR3 has provided detailed information on its policy and implementation. The update of the FiT programme is highlighted in Table 1.14 and Table 1.15.

Table 1.14: Cumulative Installed Capacities of Grid-connected FiT Renewable Energy Projects

Year	Capacity (MW)					
	Biogas	Biomass	Small Hydro	Solar PV	Total	
2015	20.23	76.70	18.30	263.87	379.10	
2016	35.69	87.90	30.30	341.69	495.58	
2017	61.79	95.55	30.30	378.41	566.05	
2018	69.94	70.65	50.30	384.62	575.51	
2019	102.76	70.65	70.30	386.93	630.64	

Source: SEDA Annual Report 2020

Table 1.15: Annual Power Generation of Commissioned FiT Renewable Energy Installations

Year	Power Generated (GWh)					
	Biogas	Biomass	Small Hydro	Solar PV	Total	
2015	63.34	246.73	56.66	277.50	644.23	
2016	107.11	248.48	50.28	359.54	765.41	
2017	216.33	247.21	75.55	424.16	963.25	
2018	251.78	226.09	89.67	467.89	1,035.43	
2019	314.29	225.22	220.60	471.90	1,232.01	

Source: SEDA Annual Report 2020

1.12 Transport

The Land Public Transport Agency (APAD) replaced the Land Public Transport Commission (SPAD) in June 2018, taking over its function of developing Malaysia's land public transport system including the mass rail transit (MRT), light rail transit (LRT), rail transportation and bus systems. The Agency is tasked with 'spearheading the transformation of an integrated, efficient and safe transportation system'. A National Transport Policy (2019-2030) was launched to increase the public transport modal share (40% by 2030) in urban areas while also implementing sustainable measures across all transport modes.

1.12.1 Roads

The length of roads has increased substantially from 90,016 km in 2005 to 258,511 km in 2019. This is primarily due to extensive expansion of state roads in the past decade leading to greater intra-state and interstate accessibility. Table 1.16 highlights the historical changes in lengths of roads.

Table 1.16: Length of Roads

	Length of roads (km)						
Year	State Roads	Federal Roads	Toll Highways	Total			
2005	70,749	17,764	1,503	90,016			
2015	197,015	19,822	1,984	218,821			
2016	218,988	19,802	1,988	240,778			
2017	217,072	19,950	2,001	239,023			
2018	227,646	19,809	1,960	249,415			
2019	236,581	19,912	2,018	258,511			

Source: Public Works Department, Ministry of Works and Malaysia Highway Authority

1.12.2 Motor-vehicle

Motor-vehicle registration has more than doubled from 2005 to 2019. Total registrations in 2019 were 31,214,772 compared to 14,816,407 in 2005. Table 1.17 shows the increase in motor-vehicle registration on a yearly basis.

Table 1.17: Motor-Vehicle Registration

Year	Motorcars	Motorcycles	Taxi & Hired Cars	Buses	Goods Vehicles	Others*	Total
2005	6,473,261	7,008,051	79,130	57,370	805,157	393,438	14,816,407
2015	11,871,696	12,094,790	172,034	66,999	1,197,987	898,446	26,301,952
2016	13,000,358	12,677,220	124,020	59,969	1,190,664	561,028	27,613,259
2017	13,582,636	13,173,069	122,172	61,059	1,223,396	575,844	28,738,176
2018	14,191,338	13,725,946	123,395	62,003	1,261,598	592,194	29,956,474
2019	14,695,664	14,322,226	120,134	62,966	1,295,486	718,296	31,214,772

Note:

Source: Ministry of Transport and Land Public Transport Agency

1.12.3 Urban Rail Transit

The rail network is crucial to the Malaysia's transport system as it enables greater domestic mobility. By the end of 2016, there were five urban rail network lines serving the Greater Kuala Lumpur namely KTM Komuter, LRT Ampang Line, LRT Kelana Jaya Line, KL Monorail and the MRT. The total ridership of rail transit and commuter trains is shown in Table 1.18.

The KTM Komuter service was first introduced in 1995 and was intended to serve interstate and within Greater Kuala Lumpur's radial corridors. Both the LRT Ampang Line (27 km) and the LRT Kelana Jaya Line (29 km) commenced operations in the city on 16 December 1996 and on 1 September 1998 respectively. The 8.6 km KL Monorail was built over an elevated track and commenced operations on 31 August 2003. In 2002, the KLIA Ekspres and the KLIA Transit were launched. The KLIA Ekspres is a high-speed, non-stop rail connection between KLIA, KLIA2 and the KL Sentral, providing a mass rail transportation option in support of the civil aviation industry. On the other hand, the KLIA Transit is a commuter service that stops at three intermediate stations. To accommodate the highly populated areas, both LRT lines – Ampang and Kelana Jaya – were extended to 45 km in total length for LRT Ampang and 46 km for LRT Kelana Jaya. The extended length went into operation on 30 June 2016.

The first MRT line – the 46 km Kajang Line - commenced service in July 2017. Phase One of the 57.7 km second line (Putrajaya Line) began operation on 16 June 2022. Phase Two of the Putrajaya Line is due for completion in the first quarter of 2023.

^{*}Including Government motorcars, trailers, and driving school vehicles

Table 1.18: Total Ridership of Rail Transit and Commuter Trains

	2005	2015	2016	2017	2018	2019
LRT Kelana Jaya Line	60,290,467	82,144,674	79,002,839	83,585,412	87,216,597	94,657,974
LRT Ampang Line	45,636,997	62,809,412	59,192,907	59,462,032	60,960,445	65,147,222
KL Monorail	16,206,441	25,067,866	21,990,242	16,841,630	12,594,377	12,535,738
KTM- Komuter	30,934,651	49,690,000	41,407,104	37,235,410	32,036,271	30,327,420
ERL KLIA Express*	2,075,105	3,470,710	2,419,883	2,275,650	2,195,353	2,155,855
ERL KLIA Transit	2,331,741	6,496,617	6,485,272	6,443,667	6,541,505	6,788,121
MRT**	N.A.	N.A.	N.A.	22,350,508	51,314,240	63,952,805

Note:

Source: Ministry of Transport and Public Land Transport Agency

1.12.4 Inter-city Railway Statistics

Malaysia has expanded its total railway route length from 1,665 km to 1,799 km during the period of 2005 to 2019. At the same time, it has also increased the length of electrified railway tracks. The Electric Train Service (ETS) provides intercity train service. These infrastructures are in Peninsular Malaysia while a single track of 134 km operates in the state of Sabah in Borneo. There are no railway services in the state of Sarawak. Table 1.19 summarises the railway statistics for Peninsular Malaysia up to 2019.

Table 1.19: Railway statistics for Peninsular Malaysia

	Unit	2005	2015	2016	2017	2018	2019
Total Railway Route Length	km	1,665	1,641	1,705	1,833	1,799	1,799
Electrified Track Railway Route Length	km	151	774	955	1,014	1,014	1,014
Total Number of Rail Passenger*	million	3.68	2.01	2.79	3.09	3.53	3.75
Rail-passenger kilometre	million	1,181	407	272	180	178	183
ETS** passenger	million	N.A	2.06	3.57	4.15	3.93	3.90
ETS** passenger kilometre	million	N.A	441	996	1,189	1,127	1,112
Freight	million tonne	4.03	6.21	5.99	5.62	5.94	5.97
Freight-kilometre	million tonne km	1,178	1,474	1,349	1,234	1,314	1,141

Note:

Source: Ministry of Transport and Land Public Transport Agency

^{*} Started operation in 2002.

^{**}Started operation in December 2016.

^{*}KTM intercity ridership only

^{**} connotes that this commuter service started operations in August 2010

1.12.5 Stage Bus Services

Table 1.20 provides information on the ridership of stage buses in selected capital cities. Annual ridership of stage buses has been declining since 2017 in most cities except Georgetown and Kota Bahru.

Table 1.20: Stage Bus Annual Ridership in Selected Capital Cities

Cities	2015	2016	2017	2018**	2019
Kangar	212	285	404	361	350
Alor Setar	1,469	1,198	999	682	488
Georgetown	18,947	13,075	12,363	15,604	16,165
lpoh	5,657	4,733	4,189	3,224	3,500
Shah Alam	12,238	N/A	N/A	N/A	N/A
Seremban	3,886	4,008	4,265	3,274	2,979
Melaka	4,887	4,455	3,319	2,078	1,402
Johor Bahru	21,000	18,051	15,418	1,248	1,222
Kuantan	4,486	4,298	3,799	3,403	2,932
Kuala Terengganu	187	312	183	281	273
Kota Bharu	3,047	2,281	1,976	1,739	1,921
Total Annual Ridership	76,016	52,696*	46,915*	31,894*	31,232*

Note:

1.12.6 Air Traffic Statistics

Between 2005 and 2019, there has been a general increase of air traffic passengers for both domestic and international air travel. The total number of domestic embarked and disembarked passengers increased from 22.4 million in 2005 to 55.5 million in 2019. The number of international embarked and disembarked international passengers increased from 16.6 million to 53.8 million for the same period. Table 1.21 summarises the trend in air travel.

Table 1.21: Yearly Total Number of Domestic and International Passengers
Handled by Airports

		Domestic		International			
Year	Embarked	Dis- embarked	Total	Embarked	Dis- embarked	Total	
2005	10,456,749	11,954,473	22,411,222	8,267,880	8,298,555	16,566,435	
2015	22,975,852	22,955,192	45,931,044	20,177,309	19,839,826	40,017,135	
2016	13,995,425	23,970,410	37,965,835	22,026,087	21,464,612	43,490,699	
2017	24,878,045	24,861,535	49,739,580	25,196,175	24,588,035	49,784,210	
2018	25,080,393	25,105,859	50,186,252	26,371,319	25, 875,483	52,246,802	
2019	27,730,091	27,792,327	55,522,418	27,358,552	26,482,106	53,840,658	

Note: *connotes that information is from Malaysia Airports Holdings Berhad

Sources: Ministry of Transport, Malaysia Airports Holdings Berhad

^{*} connotes exclusion of ridership figures for Shah Alam in 2016, 2017, 2018 and 2019

^{**}Some ridership figures for non-SBST programme reported for Jan-Nov 2018 Sources: Ministry of Transport and Public Land Transport Agency

Between 2005 and 2019, domestic cargo handled has increased from 119,685 tonnes to 189,400 tonnes while international cargo handled has shrunk from 775,313 tonnes to 753,227 tonnes. Table 1.22 reflects the changes.

Table 1.22: Yearly Total Domestic and International Cargo Handled by Airports

Year	D	Domestic (tonnes)			International (tonnes)		
I Cal	Loaded	Unloaded	Total	Loaded	Unloaded	Total	
2005	61,705	57,979	119,685	421,790	353,523	775,313	
2015	99,674	92,876	192,550	373,795	392,698	766,493	
2016	95,968	92,981	188,949	331,350	353,134	684,485	
2017	97,945	91,346	189,291	367,061	391,839	758,900	
2018	104,624	92,741	197,365	361,090	407,345	768,435	
2019	99,702	89,698	189,400	347,667	405,559	753,226	

Sources: Ministry of Transport, Malaysia Airports Holdings Berhad

1.13 Agriculture

In 2011, policies on food production and agro-commodities were separated and developed under two distinct policy documents, namely the National Agrofood Policy (2011-2020) and the National Commodity Policy (2011-2020). Sustainable development is a key principle in both policies besides strengthening the two subsectors' contributions to food security and socio-economic development.

1.13.1 Agricultural Crops

The agriculture area consists of primarily commodity crops such as oil palm, rubber and cocoa. Paddy is also an important agricultural crop and the planted areas involved double cropping. Table 1.23 reflects the planted areas of major agricultural crops in selected years between 2005 and 2019.

Table 1.23: Planted Areas of Major Agricultural Crops

Year	Crops ('000 ha)						
Teal	Rubber	Oil Palm	Cocoa	Paddy			
2005	1,271.3	4,051.4	34.0	666.8			
2015	1,074.5	5,642.9	18.1	681.6			
2016	1,078.0	5,738.0	17.4	688.8			
2017	1,081.7	5,811.1	17.5	685.5			
2018	1,127.0	5,849.3	15.6	699.9			
2019	1,131.9	5,900.1	5.9	672.1			

Sources: Ministry of Agriculture and Food Industries; Ministry of Plantation Industries and Commodities

1.13.2 Livestock

Livestock population size fluctuation across all animal types has largely remain stable between 2015 and 2019. Table 1.24 shows the livestock population from 2005 to 2019.

Table 1.24: Selected livestock populations

Year	Livestock							
	Buffalo	Cattle	Goat	Sheep	Swine	Horse*	Chicken	Duck
2005	133,232	790,065	287,670	115,922	2,035,647	2,367	174,694,165	8,052,997
2015	118,569	742,338	431,651	147,033	1,886,823	3,608	286,620,834	9,897,115
2016	119,133	737,827	416,529	138,479	1,654,381	4,145	289,666,002	9,633,185
2017	114,013	703,832	385,304	130,658	1,849,351	4,306	293,301,558	9,283,900
2018	106,988	676,686	359,200	128,298	1,967,538	4,204	260,826,321	9,780,573
2019	101,695	657,407	312,571	121,677	1,888,460	3,095	285,063,636	9,376,456

Sources: Agrofood Statistics 2020, Ministry of Agriculture and Food Industries; Department of Veterinary Services (DVS) Livestock Statistics, (*) FAOSTAT

1.13.3 Fisheries and Aquaculture

Landings of marine fish in Malaysia has had a slight increase from 1.21 million tonnes in 2005 to 1.45 million tonnes in 2019. Table 1.25 below summarises the change in landings of marine fish.

Table 1.25: Landings of Marine Fish

Year	Landings of Marine Fish ('000 tonnes)
2005*	1,210
2015	1,486
2016	1,574
2017	1,465
2018	1,453
2019	1,455

Sources: Agrofood Statistics 2020, Ministry of Agriculture and Food Industries and *Annual Fisheries Statistics, Department of Fisheries

Aquaculture production in Malaysia increased from 207,000 tonnes in 2005 to 412,000 tonnes in 2019. Fresh water aquaculture activities carried out in ponds, exmining pools, cages, cement tanks as well as pen cultures contributed 105,000 tonnes, while brackish water/marine aquaculture cultivated in ponds, cages and water tanks contributed 307,000 tonnes. Table 1.26 shows the growth of aquaculture according to the two production systems.

Table 1.26: Aquaculture production – Brackish and Coastal Areas

Year	Freshwater ('000 tonnes)	Brackish Water/Marine ('000 tonnes)	Total ('000 tonnes)
2005*	62	145	207
2015	112	394	506
2016	103	304	407
2017	103	324	427
2017	101	290	391
2019	105	307	412

Sources: Agrofood Statistics 2020, Ministry of Agriculture and Food Industries and *Annual Fisheries Statistics, Department of Fisheries

1.14 Solid Waste

Waste generation increases in tandem with population growth. Table 1.27 provides a breakdown of average daily waste generation by region while Table 1.28 presents the number of both sanitary and non-sanitary landfills according to states in 2019.

Table 1.27: Average Waste Generations Per Day in 2007 and 2012

Region	Year		
Region	2007	2012	
Peninsular Malaysia (tonnes/day)	20,500	27,802	
Sabah (tonnes/day)	1,210	2,984	
Sarawak (tonnes/day)	1,988	2,344	
Total (tonnes/day)	23,698	33,130	

Source: Survey on Solid Waste Composition, Characteristics and Existing Practice of Solid Waste Recycling in Malaysia 2012, National Solid Waste Management Department

Table 1.28: Number of Landfills in Malaysia in 2019

State	Landfills	in operation	Total
Olato	Sanitary	Non-Sanitary	Total
Johor	1	8	9
Kedah	2	2	4
Kelantan	0	10	10
Melaka	1	0	1
Negeri Sembilan	1	2	3
Pahang	2	8	10
Perak	1	15	16
Perlis	1	0	1
Pulau Pinang	1	0	2*

State	Landfills	in operation	Total	
	Sanitary	Non-Sanitary	. • • • • • • • • • • • • • • • • • • •	
Sabah	1	21	22	
Sarawak	3	43	46	
Selangor	3	2	8*	
Terengganu	1	8	9	
WP Labuan	1	0	1	
WP KL/Putrajaya	0	0	0	
Total	19	119	142*	

Note: *Including inert landfill site(s); 1 in Pulau Pinang, 3 in Selangor

Source: National Solid Waste Management Department

The solid waste composition of Malaysia for the years 2004 and 2012 (latest date of last survey of the Solid Waste sector) is shown in Table 1.29.

Table 1.29: Solid Waste Composition

	Percentage (%)			
Composition	2004 (JICA Study)	2012		
Food waste	49.3	44.5		
Garden Waste	6.6	5.8		
Paper	17.1	8.5		
Wood	0.2	1.4		
Textiles	3.7	5.2		
Diapers	5.1	12.1		
Plastic and Other Inerts	18.1	22.2		

Note: JICA – Japan International Cooperation Agency

Source: Survey on Solid Waste Composition, Characteristics and Existing Practice of Solid Waste Recycling in Malaysia 2012, National Solid Waste Management Department

1.15 Institutional Arrangements

The institutional arrangements support three key areas of climate change action: policy making, development planning and implementation, and guidance and reporting.

1.15.1 Policy Making

The Malaysia Climate Change Action Council (MyCAC) was established to address the policy direction of climate change in December 2020. It is chaired by the Prime Minister and has key Cabinet Ministers and state leaders as members.

The Cabinet is the highest policy decision-making body in the country on climate change matters under the purview of the Minister of Environment and Water. Any decisions taken at the MyCAC and other bodies require a final endorsement by the Cabinet.

1.15.2 Development Planning and Implementation

Development planning and implementation is coordinated by the Economic Planning Unit (EPU) under the Prime Minister's Department in consultation with other Ministries. These are carried out through the five-year development plans and include climate change mitigation and adaptation programmes. Table 1.30 shows the coordinating Ministries and their respective implementing agencies for key sectors.

Table 1.30: Coordinating Ministries and Their Respective Agencies Responsible for Climate Actions

Area	Sector/Area	Coordinating Ministries	Associated Implementing Ministries/State Ministries/Agencies
Greenhouse Gas Inventory	All IPCC Sectors	Ministry of Environment and Water	Ministry of Energy and Natural Resources (Energy and LULUCF sectors) Ministry of Plantation Industries and Commodities (Agriculture, LULUCF and waste sectors) Ministry of Agriculture and Food Industries (Agriculture sector) Energy Commission (Energy sector) Forest Research Institute Malaysia (LULUCF sector) Department of Environment (Waste sector) Malaysia Agriculture Research and Development Institute (Agriculture sector) Department of Statistics Malaysia Institute of Energy Policy and Research, Universiti Tenaga Nasional (Energy and Industrial Processes and Product Use sectors)
Mitigation	Energy	Economic Planning Unit and Ministry of Energy and Natural Resources	Energy Commission Sustainable Energy Development Authority Sabah State Economic Planning Unit Ministry of Energy and Environmental Sustainability Sarawak Sabah Electricity Sendirian Berhad Sarawak Energy Berhad PETRONAS

Area	Sector/Area	Coordinating Ministries	Associated Implementing Ministries/State Ministries/Agencies
	Transport	Ministry of Transport	Land Public Transport Agency Marine Department Malaysia Civil Aviation Authority of Malaysia Ministry of Plantation Industries and Commodities
	Industries	Ministry of International Trade and Industry	Malaysia Investment Development Authority SME Corporation Malaysia Malaysia Automotive Institute Ministry of Domestic Trade and Consumer Affairs Sabah State Economic Planning Unit Economic Planning Unit Sarawak
	Agriculture	Ministry of Agriculture and Food Industries Ministry of Plantation Industries and Commodities	Department of Agriculture (Peninsular Malaysia, Sabah and Sarawak) Department of Veterinary Services (Peninsular Malaysia, Sabah and Sarawak) Malaysian Agriculture Research and Development Institute Malaysian Palm Oil Board Malaysian Rubber Board Malaysian Cocoa Board
	Forestry	Ministry of Energy and Natural Resources	Forestry Department Peninsular Malaysia Sarawak Forest Department Sabah Forestry Department Department of Wildlife and National Parks Peninsular Malaysia Sabah Parks Sabah Wildlife Department Sarawak Forestry Corporation
	Waste	Ministry of Housing and Local Government Ministry of Environment and Water	National Solid Waste Management Department Solid Waste Management and Public Cleansing Management Corporation Sewerage Service Department Department of Environment Malaysian Palm Oil Board

Area	Sector/Area	Coordinating Ministries	Associated Implementing Ministries/State Ministries/Agencies
			Ministry of Local Government and Housing Sabah Ministry of Public Health, Housing and Local Government Sarawak State governments (Selangor, Pulau Pinang, Perak, Kelantan and Terengganu)
	Water Resources	Ministry of Environment and Water Ministry of Energy and Natural Resources	Department of Irrigation and Drainage National Water Services Commission National Hydraulic Research Institute of Malaysia Department of Mineral and Geoscience Ministry of Utility and Telecommunication Sarawak Sabah State Water Department
Adaptation	Coastal Resources	Ministry of Environment and Water Ministry or Energy and Natural Resources	Department of Irrigation and Drainage National Hydraulic Research Institute of Malaysia
	Agriculture	Ministry of Agriculture and Food Industries Ministry of Plantation Industries and Commodities	Department of Agriculture (Peninsular Malaysia, Sabah and Sarawak) Department of Veterinary Services (Peninsular Malaysia, Sabah and Sarawak) Department of Fisheries (Peninsular Malaysia and Sabah) Department of Marine Fisheries Sarawak Malaysian Agriculture Research and Development Institute Malaysian Palm Oil Board Malaysian Rubber Board Malaysian Cocoa Board
	Forestry and Biodiversity	Ministry of Environment and Water	Forestry Department Peninsular Malaysia Department of Fisheries Malaysia Department of Wildlife and National Parks Peninsular Malaysia

Area	Sector/Area	Coordinating Ministries	Associated Implementing Ministries/State Ministries/Agencies
			Sabah Forestry Department Sabah Wildlife Department Sabah Parks Sarawak Forest Department Sarawak Forestry Corporation Ministry of Agriculture and Food Industries (Division of Marine Parks)
	Infrastructure and Housing	Ministry of Works Ministry of Housing and Local Government Ministry of Environment and Water	Public Works Department Local Government Department National Housing Department Federal Department of Town and Country Planning Sewerage Service Department Ministry of Local Government and Housing Sabah Ministry of Public Health, Housing and Local Government Sarawak
	Energy	Economic Planning Unit and Ministry of Energy and Natural Resources	Energy Commission Sustainable Energy Development Authority PETRONAS
	Health	Ministry of Health	Institute for Medical Research Disease Control Division

Note: A new Federal Government was formed in November 2022 which involved the restructuring of several Ministries. The changes will be reflected in the subsequent report.

1.16 Guidance and Reporting

1.16.1 The National Steering Committee on Climate Change (NSCCC)

Operational matters on climate change are guided and endorsed by the National Steering Committee on Climate Change (NSCCC) chaired by the Secretary General of the Ministry of Environment and Water. The coordination for the preparation of national communications (NCs) and biennial update reports (BURs) is under the Technical Committee on Climate Change (TCCC) which reports to the NSCCC.

The secretariat to these committees is the Climate Change Division of Ministry of Environment and Water which is also the national focal point for climate change to the UNFCCC. The technical work of the NCs and BURs is carried out through six Technical Working Groups (TWGs) established under the TCCC. Figure 1.10 shows the institutional arrangement and thematic groupings to address climate change and NC/BUR reporting.

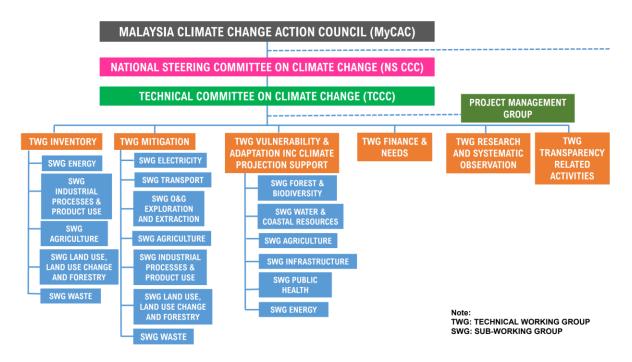


Figure 1.10: Institutional Arrangement and Thematic Working Groups for Climate Change

1.16.2 The National Steering Committee and Technical Working Committee for REDD Plus

At the national level, the National Steering Committee on REDD Plus (NSCREDD) was established in 2011 to formulate the directions and strategies for REDD plus implementation. The NSCREDD is chaired by the Secretary General of the Ministry of Energy and Natural Resources with membership from State Economic Planning Units, Forestry Departments and relevant Ministries. NSCREDD is supported by the Technical Working Committee on REDD Plus. The roles of this Technical Working Committee include providing methodological guidance on REDD plus implementation and formulating national action plans.

1.16.3 The National Committee on Clean Development Mechanism

The National Clean Development Mechanism (CDM) Committee was established in 1994 to guide CDM implementation. It is chaired by the Deputy Secretary-General of the Ministry of Environment and Water with the Secretary General being the Designated National Authority.

1.17 Summary of Key Statistics

Table 1.31 provides a summary of key statistics for 2005 and 2019.

Table 1.31: Key Statistics for 2005 and 2019

Year	2005	2019	
Latitude	0° 51′ N - 7° 33′ N		
Longitude	98° 01' E – 119° 30' E		
Area	330,24	11 km²	
Coastline	8,84	0 km	
Mean daily temperature	26 – 2	28 °C	
Average annual rainfall	2,000 – 4	,000 mm	
Average daily direct sunlight	6 hc		
Forest Cover as % of total land area	53.9% (estimate)	54.9% (estimate)	
Population	26.0 million	32.5 million	
Population density	79 per km²	99 per km²	
Female life expectancy	76.0 years	77.4 years	
Male life expectancy	71.4 years	72.5 years	
Age Profile	Below 15 years old – 30.9% 15 to 64 years old – 64.6%	Below 15 years old – 23.5% 15 to 64 years old – 69.8%	
	Above 65 years old – 4.5%	Above 65 years old – 6.7%	
Urbanisation Rate	66.5%	76.2%	
GDP (at 2015 constant prices)	RM 729,851 million	RM 1,424,310 million	
GNI/capita (at 2015 constant prices)	RM 28,251	RM 43,111	
Primary Energy Supply	65,344 ktoe	98,680 ktoe	
Final Energy Demand	38,284 ktoe	66,483 ktoe	
Total Electricity Consumption	80,705 GWh	158,603 GWh	
Length of roads (Federal, State and Toll Highways)	90,016 km	258,511 km	
Motor vehicle registration	14,816,407	31,214,772	
Annual Ridership on urban rail network in Greater Kuala Lumpur/ Klang Valley (passenger journeys)	157,475,402	275,565,135	
Annual ridership on Stages Buses (11 towns and cities) (passenger journeys)	-	31,232	
Solid Waste	-	33,130 tonnes/day (2012)	

2.GHG INVENTORY

2.1 Background, Cross-Cutting Information and Institutional Arrangement

This chapter describes the national greenhouse gas (GHG) inventory for the year 2019. Estimations of anthropogenic emissions and removals were carried out for four sectors, namely the Energy, Industrial Processes and Product Used (IPPU), Agriculture, Forestry and Other Land Use (AFOLU) and Waste sectors. However, in the description in this chapter, the AFOLU sector would be divided into AFOLU-Agriculture (IPCC Category 3A and 3C) and AFOLU-LULUCF (IPCC Category 3B). The inventory also contains time series estimates from 1990 to 2019 for each of these sectors. The corresponding reporting tables following the 2006 IPCC Guidelines for National Greenhouse Gas Inventories are provided in the Technical Annex.

This chapter also includes information on the methodology used, data sources, emission factors, gasses covered, and assumptions used for each of the sectors. Additionally, key category analysis by level and trend as well as uncertainty assessment are also provided.

The institutional structure for the preparation of the national GHG inventory is shown in Figure 1.10 of chapter 1 (National Circumstances). The GHG inventory preparation is coordinated by the Climate Change Division under the Ministry of Environment and Water (KASA). The preparation of the inventory is steered by a GHG Inventory Technical Working Group (TWG) supported by five thematic Sub Working Groups (SWG), namely for the Energy, IPPU, Agriculture, Land Use, Land-use Change and Forestry (LULUCF) and Waste sectors.

The TWG on GHG Inventory meets regularly to provide methodological guidance to ensure transparency, accuracy, completeness, consistency and comparability of the GHG inventory work carried out by the five sectoral SWGs. The TWG scope of work consists of the following five work areas:

- (a) Update Malaysia's national greenhouse gas inventory biennially;
- (b) Continuous improvement system: This work area manages the quality assurance and quality control system (QA/QC) by means of an improvement plan based on IPCC good practice guidelines for national greenhouse gas inventories. It seeks to guarantee the quality of national inventory results by ensuring their transparency, completeness, consistency, comparability and accuracy. This system also includes the review of the inventory by international experts when required;
- (c) Building and maintaining capacities: This work area builds and maintains the capacities of each GHG inventory sector team through continual training. This is done through attending locally organized training workshops as well as those organised overseas by United Nations agencies and other regional and international cooperation initiatives;

- (d) Institutionalisation: This area involves institutionalisation of the greenhouse gas inventory processes by ensuring effective inter-institution coordination and forging collaboration agreements with participating institutions through defined responsibilities, timeframes and budgets. The Terms of Reference (TOR) for the inventory compilers includes information of its preparation, timeframes of the GHG inventory, methodologies, activity data, emission factors and assumptions used and results;
- (e) Archiving, documentation and dissemination: Under this work area, an archiving and documentation system of the national greenhouse gas inventory is maintained at the Climate Change Division of the Ministry of Environment and Water (KASA); and
- (f) Approval process: The final approval of the GHG inventory results is by the National Steering Committee on Climate Change (NSCCC) based on the recommendation of the Technical Committee on Climate Change (TCCC).

2.2 Methods

2.2.1 Methodology and Parameters

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories and 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands were used to estimate the GHG emissions and removals. Time series were recalculated to reflect the updated methodologies, activity data and emission factors in accordance with the guidelines. The methodological tier and type of emission factors used to generate the estimates is reflected in Table A-1 of the Technical Annex.

The IPCC Inventory Software was used to generate the GHG inventory estimates. External spreadsheets as provided in the 2006 IPCC Guidelines were also created as a check on the calculations from the software. For the energy sector, estimates were calculated for both reference and sectoral approaches.

Geographic Coverage

The geographic coverage of the GHG inventory is complete. It covered the entire territorial boundary of Malaysia.

Sectors and Gases

All significant sources and removals of direct GHG gases that were outlined in the 2006 IPCC Guidelines, and which were associated with activities occurring in Malaysia were covered in the inventory. For the AFOLU sector, land use category definition is shown in Table 2.1.

Table 2.1: Land Use Definition

Land use	Definition
Forest Land	 Includes land under the jurisdiction of the National Forestry Act with thresholds used to define Forest Land as listed below: Minimum Mapping Unit (MMU) is 0.5 ha; Minimum crown cover is 30%; and Minimum height at maturity is 5 m.
Cropland	Include perennials like oil palm, rubber, cocoa and kenaf as commodities and fruit trees and annual crops like vegetables, spices and herbs. It also included abandoned agricultural area that is considered as unmanaged.
Grassland	Pasture land
Wetland	Land that is covered or saturated by water for all or part of the year and that does not fall into the forest land, cropland, grassland or settlements categories. It also included reservoirs, natural rivers and lakes as unmanaged sub-divisions.
Settlement	These included all built areas, including roads, highways and other transport infrastructure, human settlements of any size, industrial and commercial zones. It also included unmanaged areas due to abandoned development projects.

Gases

Estimation for the three major direct gases consisting of carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O) was carried under this inventory for the whole time series. Calculations were also carried out for the hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF_6) and nitrogen trifluoride (NF_3) gases for the IPPU sector. The Global Warming Potential (GWP) values from the IPCC Fourth Assessment Report (AR4) were used in the CO_2 equivalent calculations, and these are as shown in Table 2.2.

Table 2.2: Global Warming Potential Used

Gas	Chemical Formula	GWP
Methane	CH ₄	25
Nitrous oxide	N ₂ O	298
Hydrofluorocarbons	HFCs	1,430 - 14,800*
Perfluorocarbons	PFCs	7,390 – 12,200*
Sulphur hexafluoride	SF ₆	22,800
Nitrogen trifluoride	NF ₃	17,200

Note:

^{*}Range is for the gases emitted in Malaysia

Indirect Gases

Estimation for the precursor gases namely the nitrogen oxides (NO_x) , carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs) and sulphur dioxide (SO_2) was also carried out for the 2019 inventory for activities where the emission factors are available from the 2006 IPCC Guidelines for National GHG Inventories.

2.2.2 Description of Data Sources and Assumptions

The summary of emission factors, and summary of assumptions and activity data sources for each of the sectors are shown in Table A - 2 and Table A - 3 of the Technical Annex respectively.

Most of the activity data for the calculations of the GHG inventory were derived from annual national publications. Where required, additional activity data were obtained from departmental publications or specific sectoral reports. International data were used when data at national level were not available. Consistency check was also undertaken between Malaysia activity data reported at national level and international databases.

For the Energy sector, the data was sourced from the National Energy Balance (NEB). Additional information for the energy data is obtained from the Energy Commission (the custodian of the NEB). Additional activity data from other government agencies and the private sectors were obtained through official requests by KASA to those entities.

For the IPPU sector, data was obtained from official annual industry publications. For those sub-sectors without annual industry publications, data was obtained from the industries through official requests by KASA to those entities. Where activity data over certain periods were unavailable, extrapolation following the IPCC Guidelines was carried out. This consisted of historical data for dolomite from 1990-1996, lime from 1990-1999, glass production from 1990-2002, nitric acid production from 1990-1999, carbide and carbon black production from 1990 to 1999, SF₆ use in electrical equipment from 1990 to 2000, N₂O emissions from medical equipment from 1990-2010 and emissions from the electronic industry from 2000 to 2011.

For the Agriculture sector, activity data was obtained from the Livestock Statistics published annually by the Department of Veterinary Services (DVS), Agrofood Statistics produced by the Ministry of Agriculture and Food Industries (MAFI), the Paddy Statistics of Malaysia produced by the Department of Agriculture (DOA), Malaysian Oil Palm Statistics produced by the Malaysian Palm Oil Board (MPOB), PETRONAS Annual Report and the FAO Statistics website. Additional data was sourced from the relevant government agencies and industries.

For the LULUCF sector, the forestry activity data was obtained from the Ministry of Energy and Natural Resources (KeTSA), annual publications of the relevant forestry departments and through requests to those departments. Cropland information was obtained from the Commodity Statistics published by the Ministry of Plantation Industries and Commodities (MPIC), MAFI and the respective agriculture departments

of Peninsular Malaysia, Sabah and Sarawak. This activity data was obtained from gazette and license issued. Additionally, geospatial imageries were used to monitor changes in the forest.

For the Waste sector, activity data was obtained from the Department of Statistics Malaysia (DOSM), annual publications from MPOB, Malaysian Rubber Board (MRB), the NEB, Indah Water Konsortium Sdn. Bhd. (IWK), Sewage Services Department (JPP) Sabah and JPP Sarawak. Additional information was sourced from the relevant government agencies and industries.

2.2.3 Archiving and Documentation

For each year of GHG inventory calculation, each of the sector's compilers generate a set of activity data, the database in the IPCC Inventory software, external 2006 IPCC Guidelines spreadsheets and a sectoral report.

For the archiving of the GHG Inventory, the IPCC Inventory Software database and a flat file system for the external 2006 IPCC Guidelines spreadsheets were used for each of the five sectors (Energy, IPPU, Agriculture, LULUCF and Waste). This consists of three levels of files, which is the raw data file, the analysis files and the sectoral report file. These are deposited with the GHG Inventory and Reporting Unit of Climate Change Division in KASA. The agency heading each sectoral GHG inventory group also keeps a copy of their sectoral data files, analysis spreadsheets, sectoral reports as a second level backup.

2.2.4 Key Category Analysis

Approach 1 Level Assessment and Approach 1 Trend Assessment as outlined in the 2006 IPCC Guidelines was used for the analysis of the key categories and trend of the 2019 GHG inventory. These were carried out for the inventory including LULUCF and excluding LULUCF.

2.2.5 Uncertainty Assessment

Similarly, the Approach 1 uncertainty assessment following the 2006 IPCC Guidelines was used for the uncertainty assessment.

2.2.6 Assessment of Completeness

Efforts had been taken to ensure completeness of the 2019 inventory and the 1990 – 2019 time series to the extent possible. However, there are still sub-categories where emissions have not been estimated due to the lack of activity data and/or emissions factors. The assessment of completeness is reflected using the notation keys in the Technical Annexes.

2.2.7 QA/QC Process

The Quality Assurance and Quality Control (QA/QC) arrangements for the preparation of this GHG inventory report is illustrated schematically in Figure 2.1. The sector coordinators were charged with ensuring that adequate QA/QC procedures

were performed for the inventory, its supporting documents, calculation spreadsheets and usage of the IPCC GHG inventory software. This was undertaken through the following:

- (a) Creating a checklist of QA/QC procedures;
- (b) Collecting and reviewing checklists for completeness, and following up when necessary to ensure that the required QA/QC procedures were observed;
- (c) Delivering all documentations to the GHG Inventory and Reporting Unit under the Ministry of Environment and Water; and
- (d) Facilitating all technical reviews at the national and international levels.

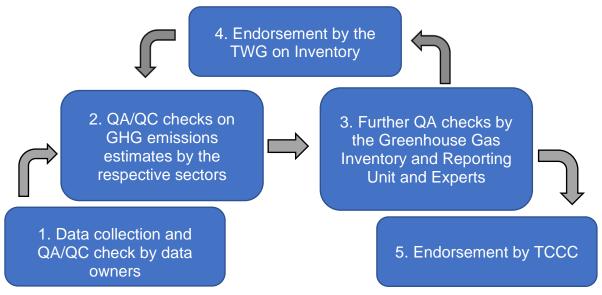


Figure 2.1: Schematic Diagram showing Quality Assurance and Quality Control
Arrangement for Greenhouse Gas Inventory

Further QA checks were carried out by the GHG Inventory and Reporting Unit of the Ministry of Environment and Water during the merging of the sectoral GHG inventory reports into this National GHG Inventory Report and GHG Inventory Technical Annex. This process was undertaken through workshops conducted by the GHG Inventory Unit with the sectoral leads of the GHG Inventory team and members of the GHG Inventory TWG. These outputs were then tabled to the TCCC for endorsement that the MRV process for the GHG inventory estimation is complete, accurate to the extent possible and transparent. The QC procedures undertaken to develop the national GHG inventory are as shown in Table 2.3.

Table 2.3: QC Procedures Undertaken in Developing the National Greenhouse Gas Inventory

QC procedures	Task	Responsibilities		
	Ensured that the total GHG emissions equalled the sum of the individual emission from the sectors and categories.			
	Ensured that the total GHG emissions equalled the sum of the emissions by gas.			
	Compared data in tables to calculation spreadsheets and to the text in order to ensure that all reported the same estimates.	Inventory compilers		
Internal consistency and accuracy	Ensured that parameters used in multiple categories (e.g., population) were consistent across categories.			
	Ensured that the emissions data is reported in a manner consistent with the reporting tables specified in the Non-Annex I National Communications and Biennial Update Reports Reporting Guidelines (Decision 17/CP.8 and Decision 2/CP.17 respectively). Ensured that the selection and application of the estimation methods were consistent with IPCC guidelines.			
	Created back-ups of all documentations in hard and soft copies and uploaded files in a central storage facility online.	Inventory compilers		
Documentation	Moved all files and documentations to a GHG database.	GHG Inventory and Reporting Unit, Ministry of Environment and Water		
	Reviewed, approved and harmonized sector files to ensure consistency in filing.	Inventory compilers		

2.3 GHG Emissions and Removals by Sector: 2019

2.3.1 Key Summary

For 2019, the total GHG emission excluding LULUCF was 330,358.21 Gg CO₂ eq. The total GHG emission excluding LULUCF consists of 259,326.11 Gg CO₂ eq. from the energy sector, 32,853.80 Gg CO₂ eq. from the IPPU sector, 28,256.59 Gg CO₂ eq. from the waste sector and 9,921.71 Gg CO₂ eq. from the agriculture sector as shown in Table 2.4. The total GHG emission including LULUCF was 115,643.68 Gg CO₂ eq. where the net emissions from the LULUCF sector was -214,714.54 Gg CO₂ eq.

Table 2.4: Summary of GHG Inventory for 2019

Sector	GHG Emission/Removal (Gg CO ₂ eq.)
Energy	259,326.11
IPPU	32,853.80
AFOLU-Agriculture ¹	9,921.71
AFOLU-LULUCF ²	-214,714.54
Waste	28,256.59
Total (Excluding LULUCF)	330,358.21
Total (Including LULUCF)	115,643.68

Note:

¹IPCC Category 3A and 3C

²IPCC Category 3B

The Short Summary and Summary Tables for the GHG inventory for 2019 are presented in Table A - 7 and A - 8 in the Technical Annex respectively. In addition, the Sectoral Tables and Background Tables for all the sectors are presented respectively in Tables A - 9 to A - 12 and Table A - 13(a) to A - 16(c). The Cross Sectoral Table for Indirect Emissions of N₂O is also reported in Table 17 and the trends of gaseous (C₂O, CH₄, N₂O, HFCs, PFCs, SF₆ and NF₃) are presented in Table A - 17 to A - 24.

2.3.2 Energy

Based on the sectoral approach, the total GHG emissions from the energy sector for 2019 was 259,326.11 Gg CO₂ eq. as shown in Table 2.5. The GHG emissions of this sector increased by 27.95% in 2019 compared to the 2005 base year emissions.

Under this sector, emissions from the energy industries constituted the highest sub-category with emissions of about 50.80% (131,735.68 Gg CO₂ eq.) of the total energy sector. The breakdown of the emissions is 42.33% from the electricity and heat production (109,768.85 Gg CO₂ eq.), 5.30% from the production of liquified natural gas (13,737.62 Gg CO₂ eq.), and 3.17% from petroleum refining (8,229.21 Gg CO₂ eq.).

The emissions from the transport sector were recorded as the second highest sub-category amounting to 25.05% (64,973.10 Gg CO₂ eq.) of the total energy sector's

emissions. The emissions consist among others, 21.40% from road transport (55,486.57 Gg CO₂ eq.) and 2.20% from domestic water-borne navigation (5,709.17 Gg CO₂ eq.).

The manufacturing and construction sub-category contributed to the third highest emissions or 12.95% of the total energy sector's emissions (33,578.18 Gg CO_2 eq.). The breakdown of this sub-category includes among others, 3.65% from iron and steel industries (9,461.08 Gg CO_2 eq.), followed by 3.08% from non-metallic mineral industries (7,997.87 Gg CO_2 eq.) and 2.44% from food processing, beverage and tobacco (6,330.61 Gg CO_2 eq.).

Table 2.5: Summary of Total GHG Emissions for Energy Sector in 2019

	2019 Emissions (Gg)			000
Sub-sector	CO ₂	CH₄ Ì	N ₂ O	Gg CO₂ eq.
GWP	1	25	298	(Gg)
1A Fuel Combustion Activities	234,858.0538	25.1257	4.5582	236,844.49
1A1 Energy Industries	131,274.3400	2.2897	1.3560	131,735.68
1A1a Main Activity Electricity and Heat Production	109,349.3055	1.7094	1.2645	109,768.85
1A1b Petroleum Refining	8,200.8157	0.3356	0.0671	8,229.21
1A1c Manufacture of Solid Fuels and Other Energy Industries (Liquified Natural Gas)	13,724.2187	0.2446	0.0245	13,737.62
1A Manufacturing Ind. & Construct.	33,482.5353	1.3718	0.2059	33,578.18
1A2a Iron and Steel	9,446.9336	0.2136	0.0295	9,461.08
1A2b Non-Ferrous Metal	311.6555	0.0056	0.0006	311.96
1A2c Chemicals	3,625.7166	0.0917	0.0141	3,632.20
1A2d Pulp, Paper and Print	982.9332	0.0277	0.0046	984.99
1A2e Food Processing, Beverage and Tobacco	6,323.6818	0.1197	0.0132	6,330.61
1A2f Non-Metallic Minerals	7,945.6393	0.7462	0.1127	7,997.87
1A2g Transport Equipment	2,729.5128	0.1052	0.0206	2,738.28
1A2h Machinery	256.4741	0.0103	0.0020	257.34
1A2i Mining (excluding fuels) and Quarrying	IE, NE	IE, NE	IE, NE	IE, NE
1A2j Wood and Wood Products	487.3545	0.0179	0.0034	488.83
1A2k Construction	IE, NE	IE, NE	IE, NE	IE, NE
1A2l Textile and Leather	852.2770	0.0207	0.0031	853.71
1A2m Non-specified Industry	520.3570	0.0133	0.0021	521.31
1A3 Transport	63,576.3871	20.7518	2.9460	64,973.10
1A3aii Domestic Aviation	1,276.2314	0.0089	0.0357	1,287.09
1A3b Road Transportation	54,225.9502	19.0746	2.6301	55,486.57
1A3c Railways	46.6926	0.0026	0.0180	52.13
1A3dii Domestic Water-borne Navigation	5,650.3769	0.5338	0.1525	5,709.17
1A3eii Off-road	2,377.1359	1.1320	0.1098	2,438.15
1A4 Other Sectors	6,036.9806	0.6983	0.0352	6,064.92
1A4a Commercial/ Institutional	1,700.3609	0.21	0.0106	1,708.56
1A4b Residential	1,650.0776	0.12	0.0028	1,654.21

Sub aceter	2019 E n	Ca CO oa			
Sub-sector	CO ₂	CH₄	N ₂ O	Gg CO₂ eq. (Gg)	
GWP	1	25	298		
1A4c Agriculture/ Forestry/ Fishing/ Fish Farms	2,686.5422	0.30	0.0218	2,702.15	
1A5 Non-Specified	487.7608	0.01	0.0150	492.59	
1A5b Mobile	487.7608	0.01	0.0150	492.59	
1B Fugitive Emission from Fuels	4,600.2451	714.6263	0.0528	22,481.62	
1B1 Solid Fuels	0.0000	0.9500		23.75	
1B1a Coal Mining & Handling	0.0000	0.9500		23.75	
1B2 Oil and Natural Gas	4,600.2451	713.6763	0.0528	22,457.87	
1B2a Oil	4,335.7036	430.0363	0.0498	15,101.46	
1B2b Natural Gas	264.5415	283.6400	0.0029	7,356.41	
Total	239,458.2489	739.7520	4.6109	259,326.11	

2.3.2.1 Comparison between Reference and Sectoral Approach: 2019

The CO_2 emissions based on the reference and sectoral approaches for the energy sector were 239,553.42 Gg CO_2 eq. and 234,858.05 Gg CO_2 eq. respectively, giving a 1.96% difference between the two approaches. The comparison between the reference and sectoral approach estimation from the year 1990 to 2019 can be found in section 2.4.7.1 of the report.

2.3.3 IPPU

The total IPPU emissions for 2019 was 32,853.80 Gg CO₂ eq. The metal industry contributed 13,081.31 Gg CO₂ eq. (39.82%) of the emissions, followed by 10,085.04 Gg CO₂ eq. (30.70%) emissions from the mineral industry, 5,760.42 Gg CO₂ eq. (17.53%) from the chemical industry, 2,790.47 Gg CO₂ eq. (8.49%) from the electronics industry, 929.77 Gg CO₂ eq. (2.83%) from product uses as substitutes for ozone depleting substances and 206.80 Gg CO₂ eq. (0.63%) from other product manufacture and use. In terms of detailed sub-sectors, the highest five emission was from cement production (9,120.65 Gg CO₂ eq. (27.76%)), followed by iron and steel production (7,553.50 Gg CO₂ eq. (22.99%)), petrochemical and carbon black production (4,498.25 Gg CO₂ eq. (13.69%)), aluminium production (3,833.44 Gg CO₂ eq. (11.67%)) and integrated circuit or semiconductor (1,857.52 Gg CO₂ eq. (5.65%)). Compared to base year 2005, the GHG emissions had increased by 118% mainly due to increase in emissions from the metal industry. The summary of GHG emissions for this sector by sub-sector and gas for 2019 is as shown in Table 2.6.

Table 2.6: Summary of Total GHG Emissions for IPPU Sector in 2019

Sub-sector	Gas	Emission (Gg)	GWP	CO₂ eq. (Gg)
2A Mineral Industry				
2A1 Cement production	CO_2	9,120.6500	1	9,120.65
2A2 Lime Production	CO ₂	128.9601	1	128.96
2A3 Glass Production	CO ₂	340.5225	1	340.52

Sub-sector		Gas	Emission (Gg)	GWP	CO₂eq. (Gg)		
2A4	Other Process Uses of Carbonates	CO ₂	494.9038	1	494.90		
2B Chem							
2B1	Ammonia Production	CO ₂	1,224.1588	1	1,224.16		
2B5	Carbide Production	CO ₂	38.0160	1	38.02		
2B8	Petrochemicals	CO ₂	4,170.4751	1	4,170.48		
	and Carbon Black Production	CH₄	13.1106	25	327.77		
	Industry						
2C1	Iron and Steel	CO ₂	7,543.2362	1	7,543.24		
	Production	CH ₄	0.4105	25	10.26		
2C2	Ferroalloy	CO ₂	1,680.4273	1	1,680.43		
	Production	CH ₄	0.5577	25	13.94		
2C3	Aluminium	CO ₂	1,216.0000	1	1,216.00		
	Production	PFC-14 (CF ₄)	0.3040	7,390	2,246.56		
		PFC-116 (C ₂ F ₆₎	0.0304	12,200	370.88		
	ronics Industry						
2E1	Integrated circuit or	PFC-14 (CF ₄)	0.0665	7,390	491.57		
	Semiconductor	PFC-116 (C ₂ F ₆)	0.0739	12,200	901.69		
		HFC-23 (CHF ₃)	0.0030	14,800	43.75		
		PFC-218 (C ₃ F ₈)	0.0037	8,830	32.63		
		SF ₆	0.0148	22,800	337.03		
050	Dhatavaltaisa	NF ₃	0.0030	17,200	50.85		
2E3	Photovoltaics	PFC-14 (CF ₄)	0.1184	7,390	875.15		
		PFC-116 (C ₂ F ₆)	0.0047	12,200	57.79		
	2F Product Uses as Substitutes for Ozone Depleting Substances						
2F1b	Mobile Air Conditioning	HFC-134a	0.6502	1,430	929.77		
2G Other Product Manufacture and Use							
2G1b	Use of Electrical Equipment	SF ₆	0.0064	22,800	146.74		
2G3a	Medical Applications	N ₂ O 0.2016		298	60.07		
		Total			32,853.80		

2.3.4 Agriculture

For the agriculture sector, GHG emissions were estimated from livestock, biomass burning, liming, urea application, direct and indirect emissions of N₂O from managed soils and rice cultivation. The gases covered were CO₂, CH₄ and N₂O.

In 2019, the GHG emissions from the agriculture sector was $9,921.71~Gg~CO_2$ eq. (Table 2.7). The highest contributor was from direct N_2O emissions from managed

soils with 3,736.73 Gg CO₂ eq. (37.66%) followed by rice cultivations sub-sector with 2,268.98 Gg CO₂ eq. (22.87%). Emissions from enteric fermentation contributed 1,224.46 Gg CO₂ eq. (12.34%) followed by indirect N₂O emissions from managed soils with 1,053.28 Gg CO₂ eq. (10.62%); emissions from manure management with 660.10 Gg CO₂ eq. (6.65%); indirect N₂O emissions from manure management with 541.90 Gg CO₂ eq. (5.46%) and emissions from urea application with 389.89 Gg CO₂ eq. (3.93%). Emission from liming (21.67 Gg CO₂ eq.) and biomass burning (24.70 Gg CO₂ eq.) contributed less than one percent of the total emissions.

Compared to the base year of 2005, GHG emissions from the agriculture sector in 2019 was 3.34% lower. This is mainly due to lower non-dairy cattle and buffalo population and fertiliser usage in 2019.

Table 2.7: Summary of Total GHG Emissions for Agriculture Sector in 2019

Sub-sector		Gas	Emission (Gg)	GWP	CO₂eq. (Gg)
			Α	В	C= (A x B)
3A1	Enteric Fermentation	CH₄	48.9784	25	1,224.46
3A2	Manura Managament	CH₄	21.5796	25	539.49
SAZ	Manure Management	N ₂ O	0.4047	298	120.61
3C1a	Diamaga Purning in Forget Land	CH₄	0.4352	25	10.88
SCIA	Biomass Burning in Forest Land	N ₂ O	0.0128	298	3.81
2C1b	Diamaga Burning in Cranland	CH₄	0.3057	25	7.64
3C1b	Biomass Burning in Cropland	N ₂ O	0.0079	298	2.36
3C2	Liming	CO ₂	21.6718	1	21.67
3C3	Urea Application	CO ₂	389.8949	1	389.89
3C4	Direct N₂O Emissions from Managed Soils	N ₂ O	12.5394	298	3,736.73
3C5	Indirect N₂O Emissions from Managed Soils	N ₂ O	3.5345	298	1,053.28
3C6	Indirect N₂O Emissions from Manure Management	N ₂ O	1.8185	298	541.90
3C7	3C7 Rice Cultivations		90.7592	25	2,268.98
	Total				9,921.71

2.3.5 **LULUCF**

The summary of the GHG emissions and removals for the LULUCF sector for year 2019 is as shown in Table 2.8. The emission and removal from LULUCF were calculated from the following categories, i.e. Forest Land Remaining Forest Land (3B1a), Cropland Remaining Cropland (2B2a), Land Converted to Cropland (3B2b), Grassland Remaining Grassland (3B3a), Wetlands Remaining Wetlands (3B4a), Settlements Remaining Settlements (3B5a) and Land Converted to Settlements (3B5b). The total CO₂ emissions/removals from C stocks changes for each land use category consisted of the sum of all subcategories taking into account the three carbon pools: (i) above-ground biomass, (ii) below-ground biomass, and (iii) soil organic carbon. The total net removals for 2019 was 214,714.54 Gg CO₂ eq.

The net LULUCF sinks increased by 8.95% for year 2019 when compared against 2005 base year due to the increase in forest land areas. In addition, the logging harvest also reduced during this period. However, there was a significant increase in Land Converted to Settlements due to mega development projects being undertaken during the 11th Malaysian Plan period (2016 to 2020) primarily in Sabah and Sarawak.

Table 2.8: Summary of Total GHG Emissions for LULUCF Sector in 2019

	Sub-sector	Gas	Emission (Gg)	GWP	CO₂eq. (Gg)
3B1 Forest					
3B1a	Forest Land Remaining Forest Land	CO ₂	-237,008.3940	1	-237,008.39
3B1b	Land Converted to Forest Land	CO ₂	NO	1	NO
3B2 Crop L	and				
3B2a	Cropland Remaining Cropland	CO ₂	-18,662.5760	1	-18,662.58
3B2b	Land Converted to Cropland	CO ₂	101.4910	1	101.49
3B3 Grassl	and				
3B3a	Grassland Remaining Grassland	CO ₂	0	1	0
3B3b	Land converted to Grassland	CO ₂	NO	1	NO
3B4 Wetlan	ds				
3B4a	Wetlands remaining Wetlands	CO ₂	NO, IE	1	NO, IE
3B5 Settlen	nents				
3B5a	Settlements Remaining Settlements	CO ₂	0	1	0
3B5b	Land converted to Settlements	CO ₂	40,854.9400	1	40,854.94
3B5bi	Forest Land Converted to Settlements	CO ₂	35,564.0340	1	35,564.03
3B5bii	Cropland Converted to Settlements	CO ₂	5,290.9060	1	5,290.91
	-214,714.54				

2.3.6 Waste

The total emissions in 2019 from the waste sector was $28,256.59 \text{ Gg CO}_2$ eq. as shown in Table 2.9. The highest emissions were from industrial wastewater treatment and discharge at $14,462.46 \text{ Gg CO}_2$ eq. (51.18%) followed by solid waste disposal sites at $11,681.20 \text{ Gg CO}_2$ eq. (41.34%) and $2,065.22 \text{ Gg CO}_2$ eq. (7.31%) from domestic wastewater treatment and discharge. Compared to the 2005 base year, GHG emissions for the waste sector increased by 28.43% and this was mainly contributed by the increase in emissions from solid waste disposal sites.

Table 2.9: Summary of Total GHG Emissions for Waste Sector in 2019

	Sub-sector		Emission (Gg)	GWP	CO₂eq. (Gg)	
4A	Solid Waste Disposal Sites	CH₄	467.2481	25	11,681.20	
4B	Biological Treatment of	CH₄	0.0097	25	0.24	
	Solid Waste	N ₂ O	0.0006	298	0.17	
4C1	4C1 Waste Incineration		42.0900	1	42.09	
		CH ₄	-	25	-	
		N ₂ O	0.0081	298	2.42	
4C2	Open Burning of Waste	CO ₂	0.6800	1	0.68	
		CH ₄	0.0751	25	1.88	
		N ₂ O	0.0007	298	0.22	
4D1	Domestic Wastewater	CH₄	67.4831	25	1,687.08	
	Treatment and Discharge	N ₂ O	1.2689	298	378.14	
4D2	Industrial Waste Treatment and Discharge	CH₄	577.3956	25	14,462.46	
Total					28,256.59	

2.4 Sectoral Time Series: 1990 - 2019

2.4.1 Key Summary

The GHG emission time series from 1990 to 2019 is shown in Figure 2.2. Excluding LULUCF, the energy sector was the main contributor to the emissions, accounting an average of annual emissions of 80.55% from 2005 to 2019. The updated total GHG emissions for previous reporting years are as shown in Table 2.10.

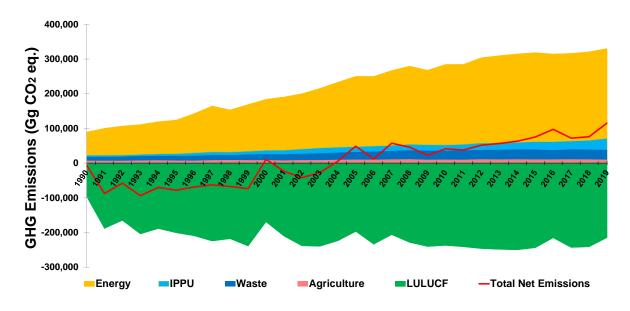


Figure 2.2: GHG Emission Time Series from 1990 to 2019

Table 2.10: GHG Emissions for the Years 1994, 2000, 2005, 2011, 2014, 2016 and 2019

Sector	Emissions/Removals (Gg CO ₂ eq.)						
Sector	1994	2000	2005	2011	2014	2016	2019
Energy	92,977.76	146,926.37	202,676.41	230,603.00	255,079.75	253,156.64	259,326.11
IPPU	5,678.85	11,531.89	15,101.60	17,042.27	20,235.40	23,746.04	32,853.80
Agriculture	8,184.72	8,752.57	10,265.04	9,906.28	11,095.67	10,711.36	9,921.71
LULUCF	-188,627.10	-169,397.24	-197,076.76	-241,252.18	-249,952.54	-215,375.05	-214,714.54
Waste	12,612.60	16,717.25	22,000.75	27,081.76	28,377.66	26,565.41	28,256.59
Total (Excluding LULUCF)	119,453.92	183,928.08	250,043.80	284,633.31	314,788.47	314,179.45	330,358.21
Total (Including LULUCF)	-69,173.17	14,530.85	52,967.03	43,381.13	64,853.93	98,804.40	115,643.68

2.4.2 Energy

The GHG emission time series for the energy sector from 1990 to 2019 is shown in Figure 2.3. For the period of 2005 to 2019, the GHG emissions for the energy sector increased at an average rate of 1.84% per year. The highest emissions were from the energy industries with an average emissions annual growth rate of 2.70% for the same period. Meanwhile, the second highest emissions were from the transport sector with an average emissions annual growth rate of 3.44% for the same period. From 2016 onwards, there was an increase in emissions from the manufacturing industries and construction's energy use due to increase in energy intensive industries. Fugitive emissions from the oil and gas industries, however, showed -1.57% growth rate during the same period.

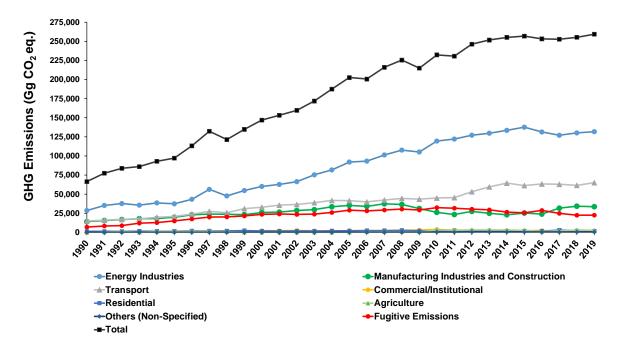


Figure 2.3: GHG Emission Time Series from 1990 to 2019 for Energy Sector

2.4.3 IPPU

The GHG emission time series for the IPPU sector from 1990 to 2019 is shown in Figure 2.4. The GHG emissions from the IPPU sector grew at an average rate of 5.92% per year from 2005 to 2019. During this period, the mineral industry contributed the highest emissions followed by the chemical, metal and electronics industries. In terms of annual average growth of emissions, the metal industry showed the highest at 21.03% followed by other product and manufacture use at 17.84% and the electronic industry at 7.51%. The emissions from the metal industry were mainly from the iron and steel production and aluminium production where there was a large increase in emissions from iron and steel production in 2019 due to the opening of a new iron and steel plant. The mineral industry while being the highest contributor in this sector, showed an average annual growth rate of 1.88%. The trend of emissions of this industry fluctuates from year to year depending on the demand for cement in the construction industry.

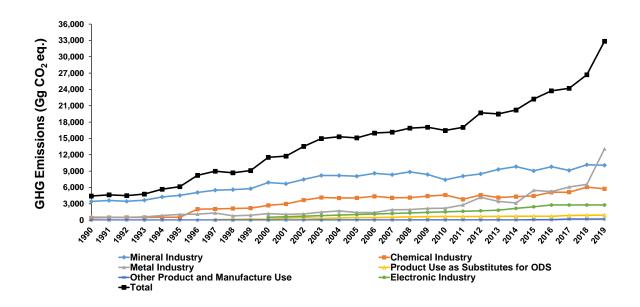


Figure 2.4: GHG Emission Time Series from 1990 to 2019 for IPPU Sector

2.4.4 Agriculture

The GHG emission time series for agriculture sector from 1990 to 2019 is shown in Figure 2.5. GHG emissions from the agriculture sector grew at an average rate of -0.03% per year from the period of 2005 to 2019. The GHG emissions growth rate fluctuated from year to year in tandem with the usage of fertiliser by the sector. Nitrous oxide emissions from managed agricultural soils were the largest source throughout the period of 2005 to 2019, contributing an average of 49.02% of the emissions. Of these, 37.84% was from direct N₂O emissions from managed agriculture soils and the remaining 11.18% were from indirect N₂O emissions from managed agriculture soils. The average annual growth rate for direct and indirect N₂O emissions from managed agricultural soils were 0.31% and -0.23% respectively for the same period. The second largest source was CH₄ emission from rice cultivation and this source contributed an annual average of 20.84% of the total agriculture sector GHG emissions over this period. Its average annual growth rate was relatively low at 0.51%. Methane emission from enteric fermentation was the third largest source and this contributed an annual average of 13.56% of the emissions from 2005 to 2019.

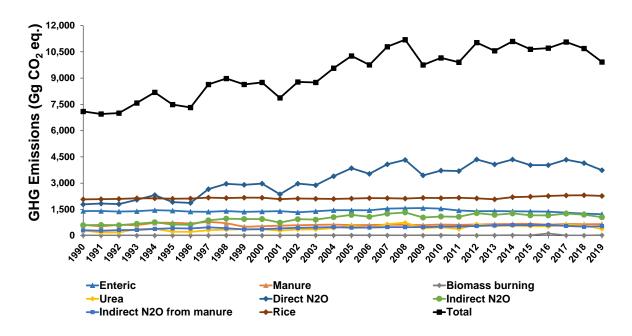


Figure 2.5: GHG Emission Time Series from 1990 to 2019 for Agriculture Sector

2.4.5 **LULUCF**

The GHG emission and removal time series for the LULUCF sector is as shown in Figure 2.6. Subsequent to the BUR3, Malaysia has made further enhancements to its land use change assessments. Malaysia is a highly dynamic country with frequent land-use changes within a short period of time. As such, land has been frequently converted within and between land-use categories more than once within a 20-year transition period. This may lead to potential over-estimates of greenhouse gas emissions and removals. By performing a series of checks, intermediate land-use changes were then corrected to ensure smoother transitions, such that each land-use change relates to a more realistic estimate of carbon stock changes. These were undertaken for years 1994 to 1997 and 2015 to 2019. In 1994, although forest land was degazetted but not deforested and became forest in 1996 to 1997. Likewise, new forest areas in State land forest between 2015 to 2019 are also in transition and not accounted.

The average annual net CO_2 removals for the LULUCF sector from 2005 to 2019 increased by 0.99% per year. The net sink had been more than 200,000 Gg CO_2 from 2005 onwards, where forest loss rates were the lowest and somewhat stabilised. There was an increase in deforestation in the period 2016 to 2019 for development purposes coupled with dynamic land use change categories over a short period of time.

For cropland, total removals are dependent on the productivity and commodity price. The total removals in cropland reduced from 1990 to 2019 due to increase in productivity. The National Commodities Policy outlined a strategic approach which focussed on enhancing productivity and limiting land expansion into forest areas.

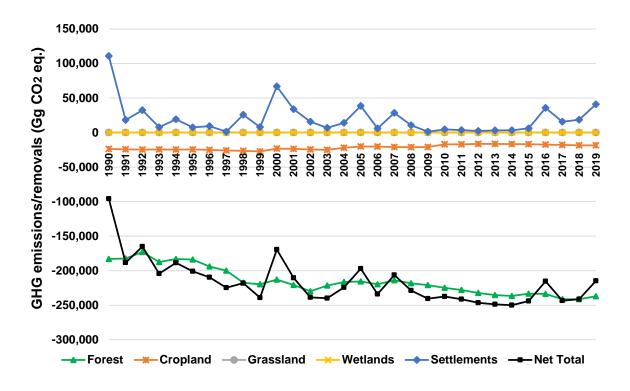


Figure 2.6: GHG Emission Time Series from 1990 to 2019 for LULUCF Sector

2.4.6 Waste

Figure 2.7 shows the GHG emission time series for the waste sector from 1990 to 2019. GHG emissions from the waste sector grew at an average rate of 1.89% per year over the period 2005 to 2019. Emissions from wastewater treatment and discharge was the largest source of emissions from 2005 to 2019 and this contributed to an average of 64.98% of the total emissions. Of these, emissions from industrial wastewater contributed 57.09% of the emissions and emissions from domestic wastewater contributed 7.89% of the total emissions. The average growth rate of emissions from industrial wastewater and domestic wastewater were 0.55% and 0.10% respectively during this period. The main source of emissions from the industrial wastewater was from palm oil mill effluent (POME). The second largest source of emissions was methane emissions from solid waste disposal sites and this source contributed an average of 34.87% of the annual emissions from 2005 to 2019. The average annual growth rate of emissions from solid waste disposal sites during this period was at 4.79%.

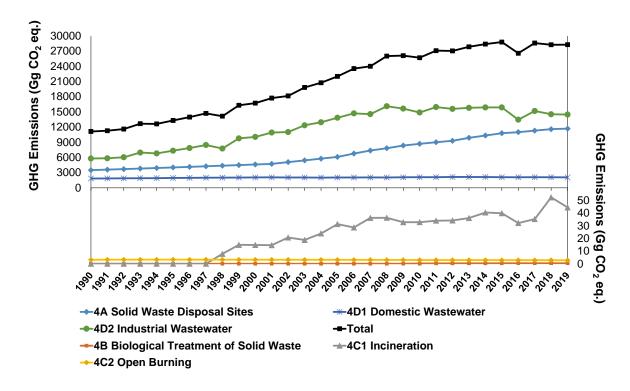


Figure 2.7: GHG Emission Time Series from 1990 to 2019 for Waste Sector

2.4.7 Recalculation of Time Series

As part of the efforts to improve the GHG estimations, recalculations were undertaken in all the sectors as additional historical data became available. Comparison of the time series by sector and by gas between the previous BUR (BUR3) and BUR4 is as shown in Table A - 4 and Table A - 5 respectively.

2.4.7.1 Energy Sector

Reference Approach

The time series for both approaches for the CO_2 emissions from 1990 to 2019 is shown in Figure 2.8. For comparison purposes, the energy sectoral and reference approach time series between BUR3 and BUR4 is shown in Table A - 6. The differences between both approaches ranged from -8.17% to 7.2% throughout the time series period. In general, the difference between the two approached had narrowed in the later years with the difference being less than 2% from 2017 to 2019.

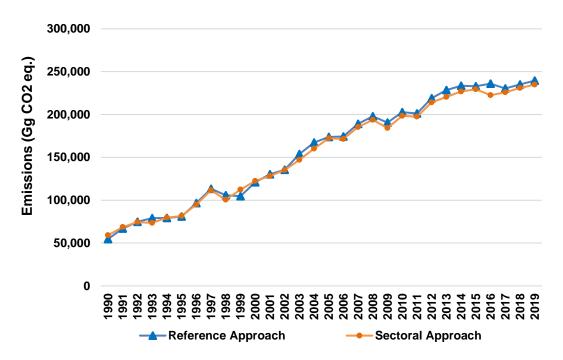


Figure 2.8: Comparison of the energy sector time-series analysis of CO₂ emission for the Reference and Sectoral approaches (1990-2019)

Sectoral Approach

For the energy sector, activity data information on petrol (gasoline) and diesel usage was only available in aggregated form for the whole transport sector in the National Energy Balance. Estimation of disaggregated data for road transport and domestic water-borne navigation in the past GHG inventory estimations was based on expert judgement. For this inventory, a recalculation was undertaken for the road transport sub-category as information on gasoline and diesel sold at petrol stations nationwide from 2017 to 2019 was made available to the compilers by the ministry responsible for domestic trade. The information for this period was also used to derive the consumption of gasoline and diesel for the years prior to 2017 through a ratio method.

A recalculation for fugitive emissions from fuels was also carried out where information on the total amount of gas vented and flared from the oil and gas fields from 2012 to 2019 was made available to the compilers by the Malaysia Petroleum Management. For the years prior to 2012, the activity data for amount of gas flared or vented was estimated based on the product of ratio of gas production in the year concerned and the average of the gas production from 2012 to 2014 and the amount vented or flared in the gas and oil fields. For all the other sub-categories under fugitive emission from oil and natural gas systems (apart from venting and flaring during production), the emission factor at the lower 10% of the default emission factor range of the developing countries in the 2006 IPCC Guidelines was used. This value was chosen based on discussion and information with PETRONAS that the fugitive emissions from their operations would be comparable to those of developed countries.

2.4.7.2 IPPU

For the IPPU sector, a minor recalculation was undertaken in the 'Other Process Uses of Carbonates' from 2011 to 2016 to remove double counting and incorrect interpretation of the activity data in 2016.

2.4.7.3 Agriculture

For the agriculture sector, a minor update was undertaken to take into account the updates in animal population.

2.4.7.4 LULUCF

For the LULUCF sector, recalculations were undertaken for forest land. This is due to the improvement in tracking land use change in the years 1994-1996 and 2015-2016, taking into to account the 20 years period in land use transition as explained in section 2.4.5. Recalculation for cropland category was also undertaken, where the total harvest for cocoa, oil palm and rubber have been updated, besides updating the total cultivated area for years 2011, 2012 and 2014 for cocoa. The differences between the net LULUCF emission/removal estimates between BUR3 and BUR4 is as shown in Figure 2.9.

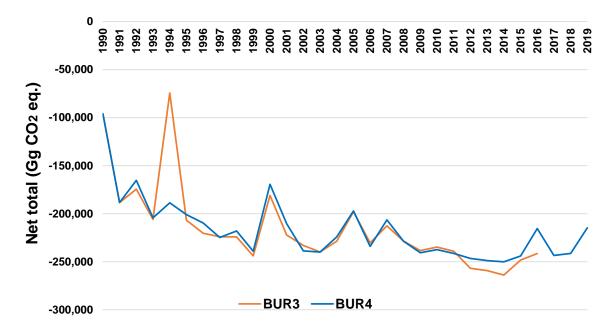


Figure 2.9: Comparison of net total LULUCF emissions estimated between BUR3 and BUR4

2.4.7.5 Waste

For the waste sector, a minor update was undertaken for 'Solid Waste Disposal' to correct the truncated value of 1.33 for CH₄/C that was used in BUR3 in the calculations. The recycling rate was also updated for 2014 to 2016. Recalculation was done on sub sector '4D1: Domestic Wastewater' due to new updates on data availability of the following:

- (a) Type of treatment system and discharge pathway: In BUR3 reporting, for the sub sector 4D1: Domestic Wastewater, domestic wastewater data from the IWK database was used to represent the whole country as there was insufficient data from Sabah and Sarawak. In BUR4 reporting, for the sub sector 4D1: Domestic Wastewater, the type of treatment and discharge pathway or system was recalculated to reflect the availability of data from both JPP Sabah and JPP Sarawak. As for Sabah, the domestic wastewater data from 1990 to 2017 was obtained from GHG Data Inventory Improvement Study conducted by consultant (North Borneo Environmental Services Sdn. Bhd.) and data from 2017 to 2019 was extrapolated from the study data. As for Sarawak, the domestic wastewater data from 2007 to 2019 was obtained from JPP Sarawak database. Whereas the data from 1990 to 2007 was extrapolation from JPP Sarawak database. The domestic wastewater data was not available from 1990 to 2007 as JPP Sarawak was only established in 2007; and
- **(b) Update on protein data:** The protein data was updated based on the updated data acquired from FAOSTAT.

2.5 Key Category Analysis

The Approach 1 Level Assessment for 2019 including and excluding LULUCF are shown in Table A - 25a and A - 25b respectively of the Technical Annex. The assessment was carried out for the whole inventory and the key categories are listed in descending order to 100% of the inventory, with the top 95% of the key categories highlighted in bold in these tables.

Overall, the key categories did not change much between those reported in NC2, NC3, BUR1, BUR2, BUR3 and the 2019 inventory reported in this report. Excluding LULUCF, the total contributions under the key categories were 78.50% for energy sector, followed by IPPU sector (9.94%), waste sector (8.55%) and agriculture sector (3.00%). The energy industries (gaseous, liquid and solid fuels) accounted for 39.88% of the key category emissions of which main activity electricity and heat production (gaseous, liquid and solid fuels) accounted for 33.23% the emissions. Transport contributed 19.67% of the emissions of which 16.80% was from road transport. Manufacturing Industries and Construction contributed 10.16% of the emissions. Fugitive emissions from fuels (solid fuels, oil and natural gas) contributed 6.81% of the emissions of which 6.80% is from oil and natural gas. Wastewater treatment and discharge (industrial and domestic) contributed 5.00% of the emissions. Solid waste disposal contributed 3.54% of the emissions. For the IPPU sector, cement production contributed 2.76% of the emissions and iron and steel production contributed 2.29% of the emissions.

Including LULUCF, the main bulk of the emissions/removals under the key categories were from the LULUCF sector (47.31%), followed by the energy sector (41.36%), IPPU sector (5.24%), waste sector (4.51%), and agriculture sector (1.58%). Forest land remaining forest land contributed the highest value at 37.80%.

Excluding LULUCF, the highest five key categories in descending order were CO₂ emissions from main activity electricity and heat production - solid fuels (22.29%), CO₂ emissions from road transportation – liquid fuels (16.34%), CO₂ emissions from main activity electricity and heat production – gaseous fuels (10.23%), CO₂ emissions from manufacturing industries and construction – gaseous fuels (5.48%) and CH₄ emissions from industrial wastewater treatment and discharge (4.38%).

Including LULUCF, the highest five key categories in descending order were from the following sectors: CO₂ removals from forest land remaining forest land (37.80%), CO₂ emissions from main activity electricity and heat production - solid fuels (11.75%), road transportation – liquid fuels (8.61%), CO₂ emissions from forest land converted to settlement (5.67%) and CO₂ emissions from main activity electricity and heat production – gaseous fuels (5.39%).

Approach 1 Trend Assessment was also carried out for the inventory excluding and including LULUCF, and these are presented in Table A – 26a and Table A – 26b respectively in the Technical Annex. Excluding LULUCF, the top three trends were from increase of CO₂ emissions from solid fuel usage in main electricity and heat production (28.33%) followed by decrease of CO₂ emissions from gaseous fuel usage in manufacturing of solid fuels and other energy industries (13.85%) and decrease of CO₂ emissions from liquid fuel usage in manufacturing industries and construction (9.17%). Including LULUCF, the highest trends occurred for increase in removals of CO₂ by forest land remaining forest land (43.30%). This was followed by decrease in CO₂ emissions from gaseous fuel usage in manufacturing of solid fuels and other energy industries (6.99%) and decrease of CO₂ emissions from forest land converted to settlements (6.89%).

2.6 Uncertainty Assessment

In this report, Approach 1 methodology based on error propagation was used to assess the uncertainty in individual categories in the inventory as a whole and in the trends of the inventory between 2019 and 2005 base year. The detailed results of this analysis for the 2019 inventory without LULUCF and with LULUCF can be found in Table A – 27a and Table A – 27b respectively of the Technical Annex. As summarised in Table 2.11, the 2019 uncertainty of the total inventory without LULUCF was \pm 15.12% and the uncertainty in trend was \pm 12.70%. With LULUCF, the uncertainty of the total inventory was \pm 57.47% and the uncertainty in trend was \pm 168.34%. In the assessment, the uncertainty range was assumed to be under a Gaussian distribution. For published data used in the inventory, the uncertainties indicated in those reports were assumed to be accurate and were used in the assessment. For emission factors, maximum range of uncertainties as indicated in the 2009 IPCC Guidelines for National Greenhouse Gas Inventories were used in the assessment.

Table 2.11: Estimated Uncertainty of 2019 Greenhouse Gas Inventory

2019 GHG Inventory	Uncertainty of Total Inventory (%)	Uncertainty in Trend (%)	
Total Inventory excluding LULUCF	15.12	12.70	
Total Inventory including LULUCF	57.47	168.34	

2.7 GHG Emission Indices

Three approaches are presented in this section (Table 2.12). The first approach considered the emissions from four sectors (Energy, IPPU, Agriculture and Waste). The second approach considered emissions from all the sectors (Energy, IPPU, Agriculture and Waste and LULUCF) and the third approach considered emissions from the four sectors (Energy, IPPU, Agriculture and Waste) and the Net-Net emissions/removals with respect to year 2005 of the LULUCF sector in deriving the GHG emission intensity indices. The GHG intensity against GDP in the third approach follows the definition in Malaysia's Nationally Determined Contribution (NDC) (the implementation years for Malaysia's NDC is from 2021 to 2030). In 2019, Malaysia's GHG Intensity against GDP reduced by 35.90% compared to 2005 values.

Table 2.12: Greenhouse Gas Emission Indices for Malaysia

	Unit	2005	2016	2019	Difference between 2019 and 2005 values (%)
Population	million	26.0455	31.6335	32.5230	24.87
GDP at constant 2015 price	million RM	729,851	1,229,312	1,423,952	95.10
	Exc	luding LUL	UCF		
Total GHG Emissions (CO₂ eq.)	mil tonnes	250.044	314.179	330.358	32.12
Emissions per capita	tonnes/capita	9.600	9.932	10.158	5.81
Emissions per GDP	kg/RM	0.3426	0.2556	0.2320	-32.28
	Inc	luding LUL	UCF		
Total GHG Emissions (CO₂ eq.)	mil tonnes	52.967	98.804	115.644	118.33
Emissions per capita	tonnes/capita	2.034	3.123	3.556	74.85
	Incl	uding LULI	JCF*		
Total GHG Emissions (CO₂ eq.)	mil tonne	250.044	295.881	312.720	25.07
Emissions per capita	tonne/capita	9.600	9.353	9.615	0.16
Emissions per GDP	kg/RM	0.3426	0.2407	0.2196	-35.90

Note: *The net-net accounting approach was applied for the LULUCF sector.

2.8 Improvement Plan

Improvement of the GHG inventory system follows a step wise approach. The institutional arrangement and the activity data collection, analysis and archiving system for GHG inventory is continually being reviewed and improved. The 2006 IPCC Guidelines for GHG Inventory would continue to be used for developing the next GHG Inventory. Efforts would be concentrated on improving the disaggregation and completeness of the activity data according to the 2006 IPCC Guidelines and developing country specific emission factors for key categories. A National GHG Inventory Improvement Plan for emission factors had been launched in 2021 under the 12th Malaysia Plan (2021-2025).

For the energy sector, efforts are being carried out to improve the emission factors and collection and disaggregation of activity data to enable higher tier calculations especially for the energy industries and road transport sub-categories. Efforts are also being carried out to improve the completeness of activity data and emission factors for fugitive emissions from the oil and gas sector. In the improvement, this sector has the highest priority as it contributed the highest amounts of emission and are among the highest ranking in the key categories.

For the IPPU sector, the activity data had depended on the willingness of the industries to publish or share information on production and emission factors. Further awareness programmes would be carried out to encourage industries to report on their GHG emissions annually through a voluntary carbon reporting programme. Efforts are being undertaken to collect the activity data for those sub-categories not yet reported, in particular for refrigeration and stationary air conditioning, and non-energy products from fuels and solvent use as well as improving the activity data for the electronics industry.

For the agriculture sector, efforts would be continued to develop the country specific emission factor for rice cultivation. Efforts are being carried out to improve the disaggregation of animal type population according to sex, age and weight categories for cattle to enable higher tier estimation of emissions from enteric fermentation.

For the LULUCF sector, the changes of land use activities are very dynamic in meeting development for rural community and country's economic growth. These changes require continuous assessment on land use and land use change especially for pre 2010 which is still ongoing. Malaysia may update its land use and land use change data once this exercise is completed. Assessment includes abandoned cropland, land use change transitions and alienated land. Planned improvement in developing country specific emission factors for soil organic carbon and dead organic matter in forests is ongoing. The project has been delayed due to the lock downs and has only started in 2022. Weather condition further delayed the data collection. Malaysia is also reviewing its approach taken to estimate biomass loss due to forest fires. Forest fires occurs primarily during the El Niño years. Malaysia plans to review its peatlands status, especially for those that have been cultivated and drained more than 50 years. Once the assessment is completed, Malaysia may review the emission factors used. Malaysia is also undertaking an assessment on how to include harvest

wood products estimates. Effort is being made to develop updated country specific emission factors for oil palm in peatlands.

For the waste sector, improvement of activity data and emission factors especially for the key categories would enable further improvement of accuracy of the emissions from the sector. A 'Survey on Solid Waste Composition Characteristic and Existing Practice of Solid Waste Recycling in Malaysia' would be conducted from November 2022 until June 2024 (18 months) by SWCorp, the national body responsible for management and enforcement of solid waste disposal and public cleansing regulations. The survey would cover all states throughout Malaysia which would provide an updated activity data information for the waste sector solid waste disposal GHG inventory estimation. For the industrial wastewater treatment and discharge sub-category, improvement on the estimation of biogas generated and captured from POME at each facility is being undertaken.

3.MITIGATION ACTIONS AND THEIR EFFECTS

3.1 Background, Cross-Cutting Information and Institutional Arrangement

This chapter describes the mitigation actions and their effects for the year 2017 to 2019. The institutional structure for the preparation of the mitigation action assessments is shown in Figure 1.10 of Chapter 1 (National Circumstances). The work is coordinated by the Climate Change Division under KASA. The preparation of the Mitigation Actions Assessment is steered by a Mitigation Technical Working Group supported by thematic Sub Working Groups. The Technical Working Group on Mitigation meets regularly to provide methodological guidance and data collection of the sectoral mitigation assessment carried out by seven sectoral Sub Working Groups. The Technical Working Group is organised around the following work areas:

- (a) Updating Malaysia's mitigation actions assessment includes data collection processes from all of the five sectors (Energy, Industrial Processes and Product Use (IPPU), Waste, Agriculture and Land Use, Land-use Change and Forestry (LULUCF)) and provide guidance on the methodological options to estimate the GHG emission reductions to the extent possible;
- (b) Continuous improvement system manages the quality assurance and quality control system (QA/QC) by means of an improvement plan focusing on those that have the most significant impact on GHG emissions or removals and those impacting key categories in the national GHG inventory;
- (c) Building and maintaining capacities builds and maintains the capacities of each sector team through training for the estimation of GHG emissions reductions, monitoring and tracking of mitigation policies and measures;
- (d) Institutionalisation institutionalise monitoring and evaluation of mitigation policies and measures especially for policy makers, industry players and stakeholders;
- (e) Archiving, documentation and dissemination archiving and documentation is maintained at the GHG Inventory and Reporting Unit of Climate Change Division in KASA. The agency heading each sectoral group also keeps a copy of the information and reports as a second level backup.
- (f) Approval process the final approval of the mitigation assessment results is by the NSCCC based on the recommendation of the TCCC.

3.1.1 Monitoring and Evaluation of Policies and Measures and the QA/QC Process

The Quality Assurance and Quality Control (QA/QC) arrangements for the monitoring and evaluation of mitigation policies and measures is illustrated schematically in Figure 3.1. The sector coordinators are tasked to ensure adequate QA/QC procedures for the monitoring and evaluation of mitigation policies and measures including maintaining supporting documents, calculation spreadsheets and information on the methodology adopted. This is undertaken through the following:

- (a) Creating a checklist of QA/QC procedures. The QC procedures undertaken in the mitigation assessment are listed in Table 3.1;
- (b) Collecting and reviewing checklists for completeness, and following up when necessary to ensure that the required QA/QC procedures were observed:
- (c) Delivering all documentations to the GHG Inventory and Reporting Unit, KASA; and
- (d) Facilitating all technical reviews at the national and international levels.

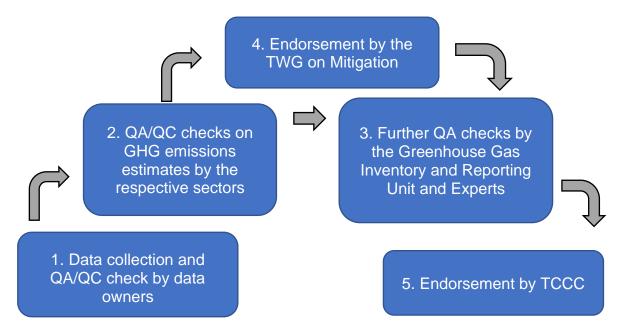


Figure 3.1: Schematic Diagram showing Quality Assurance and Quality Control Arrangement for the Estimation of GHG emission Reductions from Mitigation Actions

Table 3.1: QC Procedures Undertaken in the Mitigation Assessment

QC procedures	Task	Responsibilities
	Ensure that the activity data from the respective sectors are verified	
	Ensure that measuring units are accurate and uniformed	
Internal consistency and accuracy	Compared data in tables and spreadsheets in order to ensure that estimates are within the range of previously reported data. Any major changes will be cross-referenced with any new mitigation policy development	Sectoral SWG (Mitigation)
·	Ensured that assumption and parameters used are consistent across categories.	· · ·
	Ensured that the mitigation assessment is reported in a manner consistent with reporting format in the Non-Annex 1 Biennial Update Reports Reporting Guidelines (Decision 2/CP.17).	
Documentation	Created back-ups of all documentations in hard and soft copies and uploaded files in a central storage facility online.	Sectoral SWG (Mitigation)
	Moved all files and documentations to a database.	GHG Inventory and Reporting Unit, KASA
	Reviewed, approved and harmonised sector files to ensure consistency in filing.	Sectoral SWG (Mitigation)

Further QA checks were carried out by the GHG Inventory and Reporting Unit, KASA during the overall assessment of the mitigation actions. This process was undertaken through workshops conducted with the sectoral leads of the SWG sectoral team and members of the TWG (Mitigation). The output was then tabled to the TCCC for endorsement.

3.1.2 Methodology and Assumptions

Information on the methodology and assumptions used in the quantification of emissions reductions for each of the sectoral mitigation actions is provided in Table B-1 in the Technical Annex.

3.2 Mitigation Action Assessment

3.2.1 Key Summary

This section describes the summary of the mitigation actions and their effects in the year 2017, 2018 and 2019. Table 3.2 shows the summary of emissions reductions achieved from 16 mitigation actions across the energy, IPPU, agriculture, waste and LULUCF sectors. The total GHG emission reductions achieved (without LULUCF) are 24,450.33 Gg CO₂ eq., 26,327.76 Gg CO₂ eq. and 30,402.76 Gg CO₂ eq. for the year 2017, 2018 and 2019 respectively. Meanwhile, the total emission reductions achieved for the similar years including LULUCF mitigation efforts are 70,743.30 Gg CO₂ eq., 70,515.08 Gg CO₂ eq. and 48,040.54 Gg CO₂ eq. respectively.

Table 3.2: Summary of Emission Reductions Achieved in 2017, 2018, and 2019

Sector	Sub-Sector	Mitigation Actions		Reductions (Gg CO ₂ eq.)	
			2017	2018	2019
		RE Implementation through Feed-in Tariff mechanism	507.51	676.59	908.98
		 Biomass 	115.48	129.88	151.28
		 Biogas 	100.20	169.09	232.88
		Small Hydropower	47.26	44.99	170.39
		Solar Photovoltaic	244.57	332.64	354.42
	Renewable	Other RE from Public and Private Licensees	233.19	378.19	292.33
	Energy	 Biomass 	225.00	312.10	243.94
		 Biogas 	7.96	9.37	39.59
		Solar Photovoltaic	0.23	56.71	8.80
		Net Energy Metering	-	5.54	5.53
Energy		Large Scale Solar	-	99.46	733.14
Lileigy		Hydropower Generation	9,316.10	8,348.13	8,194.71
		 Large Hydro 	9,299.34	8,236.92	8,065.23
		 Small Hydro 	16.76	111.21	129.48
	Energy Efficiency	National Energy Efficiency Action Plan (NEEAP)	1,284.18	2,144.26	3,164.66
		Rail based public transport	179.32	200.26	269.61
		Use of energy- efficient vehicles	119.23	114.71	140.15
	Transportation	Use of palm-based biodiesel in blended petroleum diesel	1,174.30	1,174.30	1,677.57
		Use of natural gas in vehicles	81.66	66.76	54.07
	Oil & Gas	Reduction of venting and flaring	2,940.00	3,760.00	4,910.00
		Paper recycling	3,937.76	4,398.87	4,746.94
	Waste	Biogas recovery from palm oil mill effluent	3,115.12	3,367.78	3,749.19
	IPPU	Material substitution in cement production	1,554.27	1,585.17	1,548.09
Αģ	griculture	MyOrganic Certification Program	7.68	7.76	7.80
L	LULUCF	Reducing Deforestation, Sustainable	46,292.97	44,187.32	17,637.78

Sector	Sub-Sector	Mitigation Actions		Reductions (Gg CO₂ eq.)	
			2017	2018	2019
		Management of Forest and Conservation of Carbon Stocks			
Total (without LULUCF)			24,450.33	26,327.76	30,402.76
Total (with LULUCF)			70,743.30	70,515.08	48,040.54

Note: As the general rule, the emissions reductions from mitigation actions such as renewable energy (renewable electricity) and energy efficiency are quantified based on the emissions avoidance from displacing and/or reducing the consumption of grid-electricity. In this regard, three regional grid-electricity emission factors were respectively used in 2017, 2018, and 2019 for:

- Peninsular Malaysia: 0.776 tonnes CO₂/MWh, 0.807 tonnes CO₂/MWh and 0.780 tonnes CO₂/MWh;
- Sabah: 0.513 tonnes CO₂/MWh, 0.520 tonnes CO₂/MWh, and 0.527 tonnes CO₂/MWh; and
- Sarawak: 0.213 tonnes CO₂/MWh, 0.193 tonnes CO₂/MWh and 0.222 tonnes CO₂/MWh.

3.2.2 Details of Mitigation Actions

This section provides the details of the mitigation actions across the areas of renewable energy, energy efficiency, transportation, waste, industrial processes and agricultural practices. The GHG emission reductions from mitigation actions in the oil and gas industry (energy sector), cement industry (IPPU sector) and organic farming programme (agriculture sector) are quantified for the first time in this report. The details of each mitigation action are listed in Table B – 2 in the Technical Annex.

3.2.2.1 Renewable energy

The generation of electricity from renewable energy sources quantified in this section are from five major RE programs, namely RE implementation through Feed-in Tariff (FiT) mechanism, RE generation from public and private licensees, hydropower generation, Net-Energy Metering (NEM) mechanism and Large-Scale Solar (LSS) program. From these programmes, the RE generation amounted to 27,294 GWh, 28,138 GWh, and 28,875 GWh, which resulted in the emission reduction of 10,056.81 Gg CO₂ eq., 9,507.89 Gg CO₂ eq., and 10,134.67 Gg CO₂ eq. in 2017, 2018 and 2019 respectively. The largest contribution to emission reduction from renewable electricity is through hydropower generation (excluding hydropower generation under the FiT mechanism), which contributed to 96%, 94% and 90% of the emission reduction achieved in 2017, 2018 and 2019 respectively. Within this period, the contribution of mitigation actions through the RE electricity from solar also increases, mainly through the generation of solar power under the FiT mechanism, as well as the concurrent commencement of two new solar programmes under the NEM scheme and LSS quota.

3.2.2.2 National Energy Efficiency Action Plan (NEEAP)

Recognising the crucial role of demand-side energy efficiency improvement, the National Energy Efficiency Action Plan (NEEAP) was introduced in 2016 by targeting

major end-use energy consumers, namely the residential, commercial and industrial sectors. Through five key initiatives of NEEAP, the total GHG emission reductions achieved were 1,284.18 Gg CO_2 eq., 2,144.26 Gg CO_2 eq. and 3,164.66 Gg CO_2 eq. in 2017, 2018 and 2019. The achievement of NEEAP is also expected to further increase with the latest targets included under the new National Energy Policy 2022-2040, where the percentage of industrial and commercial energy efficiency savings is set at 11% and the percentage of residential energy savings at 10%, both compared to its current level of less than 1%. The details of the achievement from different programs under NEEAP is described in Table B - 3 in the Technical Annex.

3.2.2.3 Rail-based Public Transport

In 2019, the Ministry of Transport launched the National Transport Policy 2019 – 2030 where its vision is anchored on the principles of sustainable transport. With the aim to increase the modal share for public transport made as one of the five policy objectives, this vision is further amplified in the NEP 2040 target of 50% of urban public transport modal share by 2040.

Among its effort to promote the use of urban rail-based public transportation, the coverage of the rail services has been expanded to include the commencement of the new Mass Rapid Transit (MRT) operations. In addition to the existing Light Rail Transit (LRT), KL Monorail and Express Rail Link (ERL) networks, MRT Line 1 which traverses 46 km through 29 stations, with the capacity to serve about 1.2 million people with a daily expected ridership of about 400,000 passengers started its operation in 2017. Concurrently, the construction of 57.7 km tracks for MRT Line 2 continued and the first phase was open to the public in June 2022. Beyond the Klang Valley area, the promotion of rail-based public transport among Malaysians is also done through the operation of the Electric Train Service (ETS) which provides connectivity along the West Coast through its 775-km existing double-tracked and electrified route.

In this section, the GHG emission reduction from the use of railed-based transportation is limited to selected train operations in the Klang Valley area, namely the LRT, Monorail, ERL and MRT lines due to insufficient activity data. In 2017, 2018 and 2019, the total GHG emission reductions achieved were 179.32 Gg CO₂ eq., 200.26 Gg CO₂ eq., and 269.61 Gg CO₂ eq. respectively.

3.2.2.4 Energy Efficient Vehicles (EEVs)

The National Automotive Policy 2014 (NAP2014) set the vision of Malaysia becoming a regional hub for Energy Efficient Vehicles (EEVs) by 2020 through strategic investments and the adoption of high technology. In its fourth version, NAP 2020 envisions the enhancement of Malaysia's automotive industry through the era of digital industrial transformation with the central concept of Connected Mobility through the application of IR4.0 technologies. In this regard, the NEP 2040 also places a target of 38% of electric vehicle (EV) share in 2040, as compared to the current share of less than 1%.

In reporting mitigation action from EEVs use, the current estimation of GHG emission reductions only takes into consideration of electric cars (EVs) and hybrid cars, as provided by the total motor vehicle registry of the Road Transport Department

Database. In 2017, 2018, and 2019, the use of hybrid and electric vehicles has resulted in a total of 119.23 Gg CO₂ eq., 114.71 Gg CO₂ eq., and 140.15 Gg CO₂ eq. emissions avoidance respectively.

3.2.2.5 Palm oil-based fatty acid methyl ester (Biodiesel)

The National Biofuel Policy was introduced in 2006 under the Ministry of Plantation Industries and Commodities, followed by the introduction of the Malaysian Biofuel Industry Act in 2007 to regulate the biofuel industry and to facilitate the mandatory use of palm-based biodiesel with petroleum diesel. A biodiesel programme known as the B5 programme (a blend of 5% palm-based biodiesel and 95% petroleum diesel) was rolled out in 2011 and up to its end period in 2014, the B5 program had successfully established more than 1,500 retail stations to serve for the biodiesel consumption for the transport sector in Peninsular Malaysia. In 2015, the B7 programme continued as the successor to expand the coverage of this program nationwide, followed by the introduction of B10 programme in 2019 as well as the introduction of the B7 programme for the industry sector.

From 2017 to 2019, the use of palm-based biodiesel in the transport sector has contributed to a cumulative reduction of 4,026.17 Gg CO₂ eq. from a total use of 1,280,654 tonnes of biodiesel.

3.2.2.6 Natural Gas Vehicles (NGVs)

Starting in the late 1990s, the Natural Gas for Vehicles (NGVs) programme was kicked off to promote natural gas-vehicles in the public transport sector, particularly targeting taxis and buses. Through its implementation, there are 103 PETRONAS refueling stations equipped to provide retail services to approximately 77,000 NGVs on the road.

In 2017, 2018 and 2019, the emission reductions achieved from NGVs are 81.66 Gg CO₂ eq., 66.76 Gg CO₂ eq., and 54.07 Gg CO₂ eq. respectively. Overall, the trend emission reduction from this mitigation action shows a declining trend, similar to the declining trend of natural gas consumption in the transport sector, which are mainly due to the reduction of total distance travelled in taxis as well as the phasing out of NGV buses in favour of electric buses.

3.2.2.7 Emission Reductions in Venting and Flaring

The estimations of fugitive emissions of GHG in the oil and gas operations are mainly contributed from the activity of venting and flaring. PETRONAS, the national oil and gas company of Malaysia, is capping its overall GHG emissions at 49,500 Gg CO₂ eq. by 2024 for its Malaysian operations. Through various initiatives and commitments to drive towards the reduction of hydrocarbon venting and flaring under its Carbon Commitments, such as designing all new facilities to be zero continuous venting and flaring as well as reducing venting and flaring of hydrocarbons in all existing facilities. PETRONAS has recorded a reduction of GHG emissions amounting to 2,940.00 Gg CO₂ eq., 3,760.00 Gg CO₂ eq. and 4,910.00 Gg CO₂ eq. for 2017, 2018 and 2019 respectively.

3.2.2.8 Waste-Paper Recycling

The National Cleanliness Policy formulated in 2019 aims to achieve the vision of national socio-economic development with an emphasis on cleanliness and hygiene by 2030. This policy places a focus on environmental sustainability and circular economy as two of its five main clusters. In tandem with this vision, the existing National Solid Waste Management Policy which was revised in 2016 sets a target of redirection of 40% of the waste away from waste disposal sites, which will be achieved through 22% recycling rate and 18% waste treatment.

To ensure the success of the policy, Solid Waste and Public Cleansing Management Corporation (SWCorp) acts as the authority to administer and enforce laws related to solid waste management and public cleansing. Under its role, SWCorp also implements, and monitors programs related to recycling of waste, ranging from paper, plastic, aluminium, metals and other materials. Through various efforts, the recycling rate at the national level shows an improvement from 15% in 2015 to 28% in 2019. As a result, the achievement of recycling activities for paper resulted in emission reductions of 3,937.76 Gg CO₂ eq., 4,398.87 Gg CO₂ eq., and 4,746.94 Gg CO₂ eq. in 2017, 2018, and 2019 respectively. At the moment, only paper recycling is quantified in terms of GHG emission reduction due to insufficient activity data and quantification methods.

3.2.2.9 Biogas Recovery from Palm Oil Mill Effluent (POME)

The total methane recovery from POME through biogas capture facilities shows an increment on a year-to-year basis, as a result of the increment in the number of biogas capture plants installed in POME mills. In 2017, 2018 and 2019, the number of biogas capture plants installed were recorded at 104, 114, and 125, out of 454, 451 and 452 POME mills, respectively. Following these installations, a total of 3,115.12 Gg CO₂ eq., 3,367.78 Gg CO₂ eq., and 3,749.19 Gg CO₂ eq. were recovered from these facilities in 2017, 2018 and 2019 respectively.

3.2.2.10 Material Substitutions in Cement Production

For the cement industry, process emission from cement production is mainly from raw material calcination (98%) and raw meal organic carbon (2%). While the efforts in achieving emission reduction for this industry typically include mitigation initiatives on energy consumption, such as resourcing electricity from renewable energy generation and energy efficiency measures in plants, the quantification of mitigation action in this section focuses specifically on the reduction of emissions from industrial processes.

In the effort to reduce CO₂ emissions, the cement industry has shifted towards low carbon cement production process. This is carried out by replacing part of the clinker with other cementitious materials i.e. pulverised fly ash from coal fired power plants and granulated blast furnace slag. In 2017, 2018 and 2019, the total other cementitious materials used in cement production to replace clinker were 3,018 kt, 3,078 kt and 3,006 kt respectively. These resulted in emission reductions of 1,554.27 Gg CO₂ eq., 1,585.17 Gg CO₂ eq. and 1,548.09 Gg CO₂ eq. respectively.

3.2.2.11 MyOrganic Certification Program

GHG emissions in the agriculture sector are contributed among others, from the use of synthetic fertilisers, pesticides and other chemicals in post-treatment and soil structure improvements. The implementation of the Malaysia Organic (MyOrganic) certification program in 2002 was introduced to recognise good agricultural practices and organic farming nationwide. Through its core principle of no synthetic chemical use, the program is also identified to reduce GHG emissions. From 2002 to 2019, a total of 253 farms have been certified with a total area of 29,824 hectares. In the estimations of GHG emission reductions, the total emission reductions resulting from urea fertilization avoidance and the direct N₂O emissions from managed soils collectively contribute to 7.68 Gg CO₂ eq., 7.76 Gg CO₂ eq., and 7.80 Gg CO₂ eq. for 2017, 2018 and 2019 respectively.

3.2.2.12 Reducing Deforestation, Sustainable Management of Forest and Conservation of Carbon Stocks

Malaysia applied a net-net accounting approach with 2005 as the base year. The emission reductions came from the conservation, implementation of sustainable management of forest and reducing the rate of deforestation activities. An annual maximum cutting limit of 85 m³ per hectare was implemented since 2006. Despite the annual cap, the harvesting volume continues to be below the approved cap (Table 3.3). In addition, Protected Area also increased by 48%, 58% and 60% respectively for the period of 2017 to 2019 when compared against 2005. Deforestation reduced when compared against the base year. Post-2010 deforestation occurred primarily in severely degraded forest. The GHG emission reduction achieved was 46,292.97 Gg CO₂ eq., 44,187.32 Gg CO₂ eq. and 17,637.78 Gg CO₂ eq. respectively in 2017, 2018 and 2019.

Year	Total Commercial harvest (m³)
2005	24,922,000
2017	10,674,264
2018	10,272,705

10,962,627

Table 3.3: Total commercial harvest: 2005 and 2017 - 2019

3.3 International Market Mechanisms

2019

Under the UNFCCC, Malaysia had participated in the Clean Development Mechanism and Voluntary Carbon Market. However, the GHG emissions reduction from the market mechanism highlighted in this section is not accounted for as part of the national mitigation actions.

3.3.1 Clean Development Mechanism

Following Malaysia's ratification of the Kyoto Protocol in September 2002 and the Doha Amendment to the Protocol in April 2017, Malaysia developed a national

strategy on Clean Development Mechanism (CDM) that includes both short- and long-term perspectives of the country's position regarding climate change mitigation measures. Overall, Malaysia's participation in the CDM has resulted in diverse investments on GHG emission reduction projects which collectively have contributed to its sustainable development agenda.

As of 2021, Malaysia has a total of 149 CDM projects. In total, these projects involved an estimated investment of USD 453.26 million and resulted in a total of 13,777,247 CERs issued from 2006. Table B - 4 in the Technical Annex shows the distribution of CDM project activities, broken down by the project type, along with their potential annual emissions reductions, CERs issued and the reported investments. A large part of these project activities are related to the oil palm industries in terms of biomass energy generation, methane gas capture and avoidance. Collectively, oil palm-related project activities accounted for 77.9% of Malaysia's CDM pipeline of registered projects, contributing to more than 90% of the total potential emission reduction.

3.3.2 Voluntary Carbon Market

On top of CDM projects, Malaysia also participated in 12 voluntary carbon market projects which consist of eight projects under methane emission avoidance, two hydropower projects, and each one for biomass and reforestation project respectively as shown in Table B – 5 in the Technical Annex.

3.4 Improvement Plan

The GHG emission reductions are estimated from mitigation actions in the five following sectors; energy, IPPU, waste, agriculture and LULUCF sectors, compared to only three sectors reported in BUR3. Estimation of GHG emission reductions from mitigation actions particularly in the IPPU and agriculture sectors are still on-going particularly to obtain the relevant data collection and institutional arrangement for the information gathering. Efforts are also undertaken to institutionalise data collection processes from the relevant ministries/agencies and other stakeholders. As preparation for the transition to the Enhanced Transparency Framework, a new Technical Working Group on Transparency Related Activities have also been established to coordinate work for the future reporting of mitigation actions and in the preparation of information necessary to track progress made in implementing and achieving the NDC under Article 4 of the Paris Agreement.

4.LEVEL OF SUPPORT RECEIVED, CONSTRAINTS, GAPS AND NEEDS

4.1 Introduction

Climate actions in general require adequate finance, low carbon technologies as well as technical, planning and management skills for effective implementation. Mainstreaming climate change into national development plans is a priority and Malaysia continues to channel national resources in advancing its low carbon development agenda and enhance its adaptive capacity. The country has received some financial, technical and capacity building support from international sources.

This chapter provides updated information on the support received by federal and state agencies from multilateral and bilateral sources to address climate change. It also highlights the needs require to strengthen its capabilities for GHG emissions and removals estimation and implementing mitigation and adaptation actions. In addition, Malaysia will require capacity building and technical support to develop innovative sustainable financing mechanism for climate change including carbon pricing instrument.

These needs would help Malaysia implement the climate actions needed to achieve its NDC target as well as towards net zero GHG emissions as early as 2050.

4.2 Level of Support Received

As one of the two operating entities of the financial mechanism of the UNFCCC, the Global Environment Facility (GEF) has been the main source of funding. The funding provided by GEF, other multilateral agencies and bilateral sources were provided through specific projects. A summary of the financial supports received from 2017 onwards was also provided. Information on financial support received reported in previous BURs reports are not reported here unless there have been changes to the project duration or to the approved amount.

4.2.1 Global Environment Facility

Table 4.1 shows the funding allocated and received by Malaysia from GEF cycle 1 to 7 (June 1994 – June 2022) for climate change activities. From GEF cycle 4 to 7 (June 2006 – June 2022), Malaysia was allocated an indicative sum of USD43,770,035 and utilised USD38,030,884. The support received has been primarily used to develop the country's institutional and technical capacity on reporting obligations to the UNFCCC as well as the implementation of mitigation actions. The United Nations Development Programme (UNDP), the United Nations Industrial Development Organisation (UNIDO) and International Fund for Agricultural Development (IFAD) have facilitated these actions.

The funding received under GEF-6 and GEF-7 cycles were primarily used to build up technical and technological capacities. Sectors that have also received financial

support for mitigation projects were transport, energy, forestry (including peatland), low carbon cities and community empowerment projects.

Table 4.1: Summary of Global Environment Facility Funding on Climate Change Activities to Malaysia

GEF Cycle	Period	Indicative Allocation (USD)	Amount Utilised (USD)
1	July 1994 – June 1998	7,770,600	N/A
2	July 1998 – June 2002	4,000,000	N/A
3	July 2002 – June 2006	8,699,420	N/A
4	July 2006 – June 2010	11,800,000	10,768,500
5	July 2010 – June 2014	14,240,000	14,234,249
6	July 2014 – June 2018	11,964,400	7,262,500
7	July 2018 – June 2022	5,765,635	5,765,635

Note: N/A - data is not available

In the preparation of this report (BUR4), the allocation of USD352,000 from GEF for the preparation of BUR3 was used. This was made possible as the remaining of the previous allocation for BUR2 was used to prepare BUR3 and the report was submitted on 31 December 2020.

4.2.2 Green Climate Fund (GCF)

Malaysia has explored opportunities to access the Green Climate Fund and has received readiness support to enhance its implementation framework to access results-based payment. It is also in the process of applying for funding to support the development of a comprehensive National Adaptation Plan.

4.2.3 Multilateral and Bilateral Funding and Support

The updated information on financial support received from various sources since those reported in BUR3 is shown in Table 4.2.

Table 4.2: Financial Support Received from Various Sources

Source	Project Description	Focus of support	Project Duration	Implementing Agencies	Delivery Partners	Approved Amount
GEF	Sustainable Management of Peatland Ecosystems in Malaysia	Technical; Capacity-building; Mitigation	2020 – 2024	KETSA	IFAD	USD9,433,027
	Fourth National Communication and Third Biennial Update Report on Climate Change for Malaysia	Technical; Capacity-building; Reporting	2021 – 2024	KASA	UNDP	USD852,000
	Small Grant Programme Sixth Operational Phase	Technical; Capacity-building; Community level mitigation, education and awareness	2016 – 2020	NGOs and CBOs	UNDP	USD317,872
GCF	Energy Sector Programme Prioritisation, Direct Access Entity Support and Green Cities Fund Development	Technical; Capacity-building	2018 – 2019	MESTECC	Carbon Trust	USD300,000
	Strategic Frameworks support for Malaysia: Accessing REDD+ result-based payments in Malaysia	Technical; Capacity-building; Reporting	2019 – 2021	KETSA	UNEP	USD798,327
UK	Disaster Resilient City (Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur)	Technical; Capacity-building; Community-level outreach	2017 – 2019	SEADPRI, UKM	MIGHT and Innovate- UK.	£875,000

4.2.4 Other Capacity Building Assistance

Malaysia has received capacity-building support on a wide range of training programmes conducted between 2017 and 2019.

Capacity building training received were in areas such as GHG inventory, mitigation (measurement, reporting and verifying emissions data), adaptation planning, implementing and enhancing NDC, climate negotiations, climate finance and Article 6 and 13 of the Paris Agreement. These trainings were provided by UNFCCC's Consultative Group of Experts (CGEs), the Intergovernmental Panel on Climate Change (IPCC), GCF, different multilateral organisations as well as Annex I Parties. In addition, several training programmes were provided by a few non-Annex I Parties. Malaysia also attended a training workshop to enhance climate negotiation skills organised by the European Capacity Building Initiative (ECBI) and the China-ASEAN workshop on climate change policies and actions organised by China.

Malaysia continues to participate in the annual Workshop on GHG Inventories in Asia (WGIA) conducted by the National Institute for Environmental Studies (NIES), Japan. Malaysian officials attended various regional training sessions on mitigation action conducted by the UNFCCC, ASEAN, Asian Development Bank, GCF and the Japan International Cooperation Agency (JICA) on the development of mitigation strategies and mechanisms. In the area of adaptation, the UNFCCC and IPCC provided training on identifying and reporting adaptation actions. Malaysia also received support from Germany via GIZ and Japan via JICA on climate change action development and implementation. Malaysia also received support from World Health Organisation (WHO) on vulnerability and adaptation assessment on climate-related health effects.

The Iskandar Regional Development Authority (IRDA) in Johor state and the Melaka Green Technology Corporation have received capacity-building support from the United Kingdom Prosperity Fund's Future Cities Programme in the area of green mobility. IRDA has also received capacity-building assistance from the Ministry of Environment Japan under its Joint Credit Mechanism's City to City Collaboration for Building Energy Monitoring and Reporting System.

4.3 Constraints, Gaps and Needs

Malaysia continues to face challenges in implementing its commitments to address climate change. This ranges from availability of finance in light of competing needs with other development programmes, recovery from the covid pandemic, technology as well as technical and human capacity. During the International Consultation and Analysis of Malaysia's third BUR, the Team of Technical Experts (TTE) identified the following capacity-building needs:

- (a) Developing country specific EFs to enable application of the tier 2 methodology for the largest emissions sources in the energy sector;
- (b) Developing methodologies and collecting data for estimating GHG emission reductions for non-quantified initiatives, especially for reducing

- fugitive emissions by oil/gas operators, substituting material in the cement and iron and steel industries, and recycling non-paper materials;
- (c) Developing country-specific EFs and improving AD to enable application of the first-order decay model in the waste sector;
- (d) Long term modelling especially on the AFOLU sector, modelling mitigation assessment scenarios from the waste and IPPU sectors, as well as sectorwise factor/decomposition analyses;
- (e) Enhancing the national capacity to conduct the technology needs assessment, when required, by improving access to adequate financial resources and technical support from international sources; and
- (f) Enhancing the national capacity to estimate emissions from soils and use models, such as the Yasso model.

In addition, the TTE in consultation with Malaysia also identified a need for capacity-building that could facilitate the Party's transition to the enhanced transparency framework under the Paris Agreement, namely enhancing the national capacity for future scenario analysis, including factor analysis and decomposition analysis at the sectoral level.

Although Malaysia has reported its GHG inventory and mitigation actions and their effects, however gaps remain in the reporting. In the GHG inventory report, gaps still exist in the completeness, use of country specific emission factors and activity data. Malaysia is only beginning to report on its achievement of NDC. Hence additional technical capacity building and financial assistance would be required to develop systems to track the NDC implementation and cooperative approaches (Article 6 of Paris Agreement).

Malaysia's needs for external financial, technical/technology and capacity building support are summarised according to the thematic areas of Greenhouse Gas Inventories, Mitigation and Adaptation in Table 4.3, 4.4 and 4.5 respectively. These needs had been identified by the proponent agencies and nationally agreed upon through workshop consultations and reviewed by the TWG on Finance and Needs as well as been endorsed by the NSCCC

Table 4.3: Summary of Needs for GHG Inventory Improvement for Key Emitting Sectors

		Lead	Status/		International sur	pport needed
Sector	Activity	Agencies	Duration	Finance	Technical/ Technology	Capacity-building
All sector	Development of country- specific Emission Factors (CSEFs) for key categories	KASA	3 years	USD 2 mil	Not required	Development of CSEFs for key categories
Waste	Improvement on GHG calculation for domestic wastewater treatment and discharge	KASA, SSD	2 years	USD250,000	Not required	Training on GHG methodology and calculation (i.e. incorporate existing data available into the IPCC calculation template) to complete national reporting

Table 4.4: Summary of Needs for Mitigation Actions in Energy, IPPU, Waste, Forestry and Agriculture Sectors

		Lead	Status/	International support needed		
Sector	Activity	Agencies	Duration	Finance	Technical/ Technology	Capacity-building
Industrial Processes	Processes emissions from the iron and steel	MISIF	New project	USD40 mil	Scrap pre-heating	Training on iron & steel Life-cycle Assessment and GHGs emission calculation
		New project	USD3.7 mil	EAF Meltshop Dedusting system	Carbon reduction strategy, Social Impact Assessment, Corporate	
			New project	USD2.2 mil	Carbon capture project	Sustainability Foundation and Sustainability concept, myth &
			New project	USD220,000	Wet scrubber for Sinter Plant	integration
	Establishment of National Life Cycle Inventory Database	MITI, SIRIM	Extension to National programme	Not required	Expert technical review	National LCID governance. IT- based capacity development for

		Lead	Status/		International s	upport needed
Sector	Activity	Agencies	Duration	Finance	Technical/ Technology	Capacity-building
	(LCID) for major industries specifically for iron and steel, cement and semiconductor industries		– new project			interoperable system to Global LCA Data Access (GLAD) network
	Reduction of emissions from the cement industry	C&CA	New Project	To be assessed	Carbon capture and processing for utilization in secondary cementitious material production	 R&D centre and researcher training Presentation by technology provider to industry Transfer of technology & knowledge to local universities and local technology partner Collaboration/Partnerships with CIDB, SIRIM on cement standard
		C&CA	New Project	To be assessed	CO ₂ storage and sequestration in a suitable geologic medium	 Training on selection of suitable geologic medium and site preparation Collaboration with oil & gas companies and JMG to identify suitable storage / aquifer on land & sea for CO₂ storage
		Cement and construction sector/CIDB	New Project	To be assessed	Not required	Training to promote change in construction and precast sectors, to convert from using Portland cement to increasing use of low carbon cement and concrete
		MIDA, MITI, KASA	New Project	Not required	R&D on captured CO ₂	Collaboration with MNC or other industries to identify off-take of

		Lead	Status/		International s	upport needed
Sector	Activity	Agencies	Duration	Finance	Technical/ Technology	Capacity-building
						captured CO ₂ to be utilised in food industry, gas industry etc
Transpor- tation	Develop techno- economic model and roadmap for e-Bus, e-2-wheelers, e- goods transfer and e- company fleet and propose incentive mechanism for commercial electric vehicle nationwide	MoT, APAD	2021 - 2030	Not required	Technical expertise for the development of the techno- economic incentive mechanism	Not required
	Second generation biodiesel	MPIC, MPOB	New project	USD50,000	Joint R&DSharing of technology	Training on policy and technical knowledge
Waste	Improvement of performance efficiency and optimisation of resource recovery for anaerobic digestion of industrial wastewater for palm oil mills	MPIC, MPOB	On-going	Not required	Technology concerning biotechnology/biol ogy synthesis and engineering	Training and collaboration needed with international technology to develop waste management locally
	Policy development on cleaner and climate-friendly sewerage treatment plants	KASA, SPAN MHLG, SSD & IWK	New project	Not required	Technical expertise and technological options for cleaner and climate-friendly	Training on developing policy options for cleaner and climate-friendly sewerage treatment plant

		Lead	Status/		International s	upport needed
Sector	Activity	Agencies	Duration	Finance	Technical/ Technology	Capacity-building
					sewerage treatment plant	
Urban planning	Incorporating low carbon reduction strategies and climate change adaptation into town planning process	Town and Country Planning Department	New project	Not required	Tools for town planners to quantify the value of carbon emissions based on land use planning	Training to develop in-house expertise to understand the carbon emissions magnitude from urban development processes and land use change
Infrastruc- ture Buildings	Sustainable building project through MyCREST assessment	CIDB	3 years	USD450,000	Not required	Training to build up local capacity in designing, constructing, operating and maintaining sustainable building
	Sustainable infrastructure project through Sustainable INFRASTAR assessment	CIDB	3 years	USD450,000	Not required	Training to build up local capacity in designing and constructing sustainable infrastructure projects
Cross- cutting	Implementation of Article 6 of the Paris Agreement Rules, Modalities and Procedures	KASA	3 years	Not required	Technical capacity to develop tracking system for ITMOs	Capacity-building on applying corresponding adjustments
	Green Investment manual for Iskandar Malaysia	IRDA	1year	USD135,000	Dispatch technical assistance/ project funding	Provide capacity building programme for agency and local authorities
	 Capacity building on climate action for the financial sector. 	Capital Markets Malaysia	2023-2025	Not required	Not required	Training and best practice sharing on:

		Lead	Status		International s	support needed
Sector	Activity	Agencies	Status/ Duration	Finance	Technical/ Technology	Capacity-building
	 Capacity building on sustainable corporate practices for corporations Capacity building and best practice sharing for the investment community 					 innovative climate finance and social finance products and services; ESG for corporations; and sustainable investment best practices, stewardship, and engagement
Carbon Market	Capacity building programmes targeted at various stakeholders involved in the development of a voluntary carbon market, including potential buyers and suppliers of carbon credits.	Bursa Malaysia Berhad	2023-2025	Not required	Not required	Training on voluntary carbon market project development and corporate offsetting.

Table 4.5: Summary of Needs for Adaptation in Various Sectors

			Status/		International sup	port needed
Sector	Activity	Lead Agencies	Duration	Finance	Technical/ Technology	Capacity-building
Climate modelling and V&A assessment	Down-scaling climate change scenarios at local/city level for vulnerability and adaptation assessment	KASA; NAHRIM with TWG V&A UKM; MET Malaysia	New project	USD5 mil	Technology to downscale and interpret climate outputs for adaptation policy options; sectoral tools and models for V&A assessment	Training to develop inhouse expertise within NAHRIM to downscale climate change scenarios at national level. Training for sectoral expertise to carry out V&A assessment.
Policy Development	Development of National Adaptation Plan	KASA	New project	USD3 mil	Policy tools to make decision on adaptation measures to take	Identification of priority adaptation sectors and spatial areas.
Disaster Risks Management	Science, technology and innovation (STI) for integrating disaster risk reduction (DRR) and climate change action at local levels.	MOSTI/ASM/ NADMA	New project (2023- 2027)	USD2 mil	Review of good practices to provide practical insights into the integration of disaster risk reduction and climate change adaptation agendas in cities.	Trainings and workshops for technical experts to enhance their knowledge in producing materials and technologies and foster innovative and forward-thinking solutions to help decision-makers and stakeholders on integrating disaster risk reduction and

			Status/		International sup	port needed
Sector	Activity	Lead Agencies	Duration	Finance	Technical/ Technology	Capacity-building
						climate change action at local levels.
	Incorporating climate change factor into flood mitigation and drainage project design taking into account rainfall patterns	DID	On-going	Not required	Technical expertise to review and improve current climate change factors for flood mitigation and drainage project design taking into account rainfall patterns	Workshops to train local officers in reviewing climate change factors.
		SEDIA, Sabah DID, Sabah Environment Protection Department, Sabah Ministry of Local Government and Housing, Sabah Forestry Department, Sabah Town and Regional Planning Department	In planning 2022 – 2030 (SDC Blueprint 2.0)	Yes	Expertise to evaluate and enhance the existing climate change aspects in storm drainage design	Workshops to train local officers in analysing climate change aspects

			Status/		International sup	port needed
Sector	Activity	Lead Agencies	Duration	Finance	Technical/ Technology	Capacity-building
	National Flood Forecasting and Warning Programme	DID	On-going	No	Technical expertise to: • review and improve the flood forecast techniques for adopting climate change factors • review and enhance flood- related variables resulting from present climate change especially for flash flood and monsoon flood	Training to improve local expertise on: • hydrometeorology in utilising Numerical Weather Prediction and radar data • Use of artificial intelligence and machine learning for flood forecasting
		SEDIA and Sabah DID	In planning 2022 – 2030 (SDC Blueprint 2.0)	Yes	Technical expertise to review and enhance flood- related variables resulting from present climate change	Workshop to train local officers in analysing climate change aspects

			Status/		International sup	port needed
Sector	Activity	Lead Agencies	Duration	Finance	Technical/ Technology	Capacity-building
	Action Plan for Living with Risks – Resilience City	IRDA	New project – one year	USD1.2 mil	Dispatch technical assistance/ Project funding	Provide capacity-building programme for agency and local authorities
	Review and update of Drainage and Stormwater Management Blueprint for Iskandar Malaysia with Integration of Flood Hazard and Risk Map to develop a Smart Disaster Risk Management System	IRDA		USD450,000	Dispatch technical assistance/ Project funding	Provide capacity-building programme for agency and local authorities
Agriculture	Soil Doctor Programme (under the FAO Global Soil Partnership)	DoA (PM)	2026-2030	USD50,000	Soil management techniques	To strengthen the capacity of farmers on sustainable soil management by providing soil doctors with training, educational material and soil testing kits to build capacity on the principles of soil science and promote the practice of sustainable soil management

			Status/		International sup	port needed
Sector	Activity	Lead Agencies	Duration	Finance	Technical/ Technology	Capacity-building
	Improvement of performance efficiency and optimisation on water recycle system for kenaf bio-retting and degumming processing	MPIC, NKTB	On-going	Not required	Technology concerning biotechnology/bi ology synthesis and engineering	Training to develop expertise within NKTB officers to innovate and optimize the bio-retting systems in concern with sustainable water recycling model
Water and Coastal Resources	Enhancing water resources security	KASA, DID	On-going	USD50 mil	Technology that can capture and integrate flood water as part of water resources in urban areas	Not required
	Adaptive Planning for Climate Change and Biodiversity Conservation in Coastal Ecosystems through improved Knowledge Management and Observatory Systems	IRDA	One-year	USD450,000	Dispatch technical assistance	Provide capacity-building programme for agency and local authorities
Public Health	Assessment of climate vulnerabilities of island communities	MoH (IMR)	New project (3 years)	USD560,000	Development of tools and methods of assessing public	Public health adaptation plan and management

			Status/		understanding and knowledge in conducting risk and vulnerabilities assessment for landslide Not required Training to build up local understanding and knowledge in conducting	
Sector	Activity	Lead Agencies	Duration	Finance		Capacity-building
					vulnerability among remote and small island	
Infrastructure and Buildings	Resilient construction courses on landslide	CIDB	3 years	USD450,000	Not required	knowledge in conducting risk and vulnerabilities
	Resilient construction courses on flood	CIDB	3 years	USD450,000	Not required	Training to build up local understanding and knowledge in conducting risk and vulnerabilities assessment for floods

TECHNICAL ANNEX

Note: The following standard indicators are used for the Tables in this Technical Annex:

- **NO** (Not occurring) for activities or processes that do not occur for a particular gas or source/sink category within a country;
- **NE** (Not estimated) for existing emissions and removals which have not been estimated;
- **NA** (Not applicable) for activities in a given source/sink category which do not result in emissions or removals of a specific gas;
- **IE** (Included elsewhere) for emissions or removals estimated but included elsewhere in the inventory;
- C denotes confidential data.

Table A - 1: Methodological Tiers and Type of Emission Factors

		С	CO ₂		4	N ₂ C	
		Method	EF	Method	EF	Method	EF
1 ENERGY							
1A Fuel Com	bustion Activities						
1A1 Energy	Industries						
1A1a	Electricity and Heat Production						
1A1ai	Electricity Generation	T1	D	T1	D	T1	D
1A1 aii	Combined Heat and Power Generation (CHP)	T1	D	T1	D	T1	D
1A1 aiii	Heat Plants	-	-	-	-	-	-
1A1 b	Petroleum Refining	T1	D	T1	D	T1	D
1A1 c	Manufacture of Solid Fuels and Other Energy Industries						
1A1 ci	Manufacture of Solid Fuels	-	-	-	-	-	-
1A1 cii	Other Energy Industries	T1	D	T1	D	T1	D
1A2 Manufac	cturing Industries and Construction						
1A2 a	Iron and Steel	T1	D	T1	D	T1	D
1A2 b	Non-Ferrous Metals	T1	D	T1	D	T1	D
1A2 c	Chemicals	T1	D	T1	D	T1	D
1A2 d	Pulp, Paper and Print	T1	D	T1	D	T1	D
1A2 e	Food Processing, Beverages and	T1	D	T1	D	T1	D
1101	Tobacco						
1A2 f	Non-Metallic Minerals	T1	D	T1	D	T1	D
1A2 g	Transport Equipment	T1	D	T1	D	T1	D
1A2 h	Machinery	T1	D	T1	D	T1	D
1A2 i	Mining (excluding fuels) and Quarrying	-	-	-	-	-	
1A2 j	Wood and wood products	T1	D	T1	D	T1	D
1A2 k	Construction	-	-	-	-	-	-
1A2 I	Textile and Leather	T1	D	T1	D	T1	D

		C	O ₂	СН	4	N ₂ C)
		Method	EF	Method	EF	Method	EF
1A2 m	Non-specified Industry	T1	D	T1	D	T1	D
1A3 Transpor	rt						
1A3 a	Civil Aviation	T1	D	T1	D	T1	D
1A3 ai	International Aviation	T1	D	T1	D	T1	D
1A3 aii	Domestic Aviation	T1	D	T1	D	T1	D
1A3 b	Road Transportation	T1	D	T1	D	T1	D
1A3 c	Railways	T1	D	T1	D	T1	D
1A3 d	Water-borne Navigation	T1	D	T1	D	T1	D
1A3 di	International Water-borne Navigation	T1	D	T1	D	T1	D
1A3 dii	Domestic Water-borne Navigation	T1	D	T1	D	T1	D
1A4	Other Sectors						
1A4 a	Commercial/Institutional	T1	D	T1	D	T1	D
1A4 b	Residential	T1	D	T1	D	T1	D
1A4 c	Agriculture/Forestry/Fishing/Fish Farms	T1	D	T1	D	T1	D
1A4 ci	Stationary	T1	D	T1	D	T1	D
1A4 cii	Off-road Vehicles and Other Machinery	T1	D	T1	D	T1	D
1A4 ciii	Fishing (mobile combustion)	T1	D	T1	D	T1	D
1A5	Non-Specified						
1A5 a	Non specified stationary	-	-	-	-	-	-
1A5 b	Non specified mobile						
1A5 bi	Mobile (aviation component)	T1	D	T1	D	T1	D
1A5 bii	Mobile (water-borne component)	T1	D	T1	D	T1	D
1A5 biii	Mobile (other)	T1	D	T1	D	T1	D
1B Fugitive E	missions from Fuels						
1B1 Solid Fue	els						
1B1a	Coal mining and handling			T1	D		
1B1 ai	Underground mines			T1	D		

C)	C	٠
Ć	()

		C	O ₂	СН	4	N ₂ C	
		Method	EF	Method	EF	Method	EF
1B1 aii	Surface mines			T1	D		
1B1b	Uncontrolled combustion and burning coal dumps	-	-	-	-	-	-
1B1c	Solid fuel transformation	-	-	-	-	-	-
1B2 Oil and	Natural Gas						
1B2a	Oil						
1B2ai	Venting	T1	D	T1	D	-	-
1B2aii	Flaring	T1	D	T1	D	-	-
1B2aiii	All Other	T1	D	T1	D	-	-
1B2b	Natural Gas						
1B2bi	Venting	T1	D	T1	D	-	-
1B2bii	Flaring	T1	D	T1	D	-	-
1B2biii	All Other	T1	D	T1	D	-	-
2 Industrial I	Processes and Product Use						
2A Mineral II	ndustry						
2A1	Cement Production	T2	CS				
2A2	Lime Production	T1	D				
2A3	Glass Production	T1	D				
2A4	Other Process Uses of Carbonates	T1	D				
2B Chemical	Industry						
2B1	Ammonia Production	T2	D				
2B5	Carbide Production	T1	D				
2B8	Petrochemicals and Carbon Black Production	T1	D	T1	D		
2C Metal Ind							
2C1	Iron & Steel Production	T1	D	T1	D		
2C2	Ferroalloy Production	T1	D	T1	D		
2C3	Aluminium Production	T1	D				
2E Electroni	cs Industry						

O	
$\tilde{}$	
90	

		CO ₂		CH ₄		N ₂ (C
		Method	EF	Method	EF	Method	EF
2E1	Semiconductor Production	T1	D	-	-	-	-
2E3	Photovoltaics Production	T1	D	-	-	-	-
2F Product Us	ses as Substitutes for Ozone Depleting Substances			1		1	
2F1	Mobile Air-Conditioning	T2	D	-	-	-	-
2G Other Prod	duct Manufacture and Use						
2G1	SF ₆ Use in Electrical Equipment	T1	D	-	-	-	-
2G3a	N₂O in Medical Applications	-	-	-	-	T1	D
3 AFOLU							
3A Livestock							
3A1	Enteric Fermentation	-	-	T1	CS, D	-	-
3A2	Manure Management	-	-	T1	CS, D	T1	CS, D
3B Land							
3B1	Forest Land Remaining Forest Land	T2	CS, D	T1	D	T1	D
3B2	Cropland Remaining Cropland	T2	CS	T1	CS	T1	D
3B3	Grassland Remaining Grassland	T1	-	-	-	-	-
3B4	Wetland Remaining Wetlands	T1	-	-	-	-	-
3B5	Settlement Remaining Settlement	T1	CS, D	-	-	-	-
3B6	Other Land remaining Other Land	-	-	-	-	-	-
3C Aggregate	Sources and Non-CO ₂ Emissions Sources on Land						
3C1	Biomass burning in Cropland	-	-	T1	D	T1	D
3C2	Liming	T1	D	-	-	-	-
3C3	Urea Application	T1	D	-	-	-	-
3C4	Direct N₂O Emissions from Managed Soils	-	-	-	-	T1	CS, D
3C5	Indirect N₂O Emissions from Managed Soils	-	-	-	-	T1	D
3C6	Indirect N ₂ O Emissions from Manure Management	-	-	-	-	T1	D
3C7	Rice Cultivations	-	-	T1	D	-	-

(•	
7	-	

		CO ₂		CH₄		N ₂ O		
		Method	EF	Method	EF	Method	EF	
4 Waste								
4A	Solid Waste Disposal Sites	-	-	T1	D	-	-	
4B	Biological Treatment of Solid Waste	-	-	T1	D	T1	D	
4C Incineration	4C Incineration and Open Burning of Waste							
4C1	Incineration	T2a	D	T2a	D	T2a	D	
4C2	Open Burning	T1	D	T1	D	T1	D	
4D Wastewater Treatment and Discharge								
4D1	Domestic Wastewater	-	-	T1	D	-	-	
4D2 Industrial	4D2 Industrial Wastewater							
	POME Methane Emission	-	-	T2	CS	-	-	
	Rubber	-	-	T1	D	-	-	
	Petroleum Refineries	-	-	T1	D	-	-	
	Pulp & Paper	-	-	T1	D	-	-	
	Meat & Poultry	-	-	T1	D	-	-	

Note:

D represents IPCC default CS represents country-specific T refers to IPCC Tiers

Table A - 2: Summary of Emission Factors Used Energy Sector (1 of 4)

						Emission	factors					
		CO ₂ (kg /TJ)	CH₄ (kg /TJ)	N ₂ O (kg /TJ)	HFCs	PFCs	SF ₆	NF ₃	NO _X	со	NMVOCs	SO ₂
ENERGY		() /	, (3 /	, (3 /								
1A Fuel Co	ombustion Activities											
1A1 Energ	gy Industries											
1A1a Elec	tricity and Heat Production											
1A1ai	Electricity Generation											
	Diesel oil Residual Fuel Oil Bituminous Sub-bituminous coal Lignite Natural Gas Biomass (Other Primary Solid Biomass) Biogas (Other Biogas)	74100 77400 94,600 96100 101000 56100 100,000 54,600	3 3 1 1 1 1 30 1	0.6 0.6 0.5 0.5 0.5 0.1 4 0.1								
1A1b	Petroleum Refining											
	Crude oil	73300	3	0.6								
1A1c	Manufacture of Solid Fuels and Other Energy Industries											
	Natural gas	56100	1	0.1								
1A2 Manu	facturing Industries and Construction											
	Natural gas Motor Gasoline Gas/Diesel oil Residual Fuel Oil LPG Other kerosene Sub-bituminous coal	56100 69300 74100 77400 63100 71900 96100	1 3 3 3 1 3	0.1 0.6 0.6 0.6 0.1 0.6 1.5								
1A3 Trans												
1A3a	Civil Aviation											
1A3aii	Domestic Aviation											
	Jet kerosene	71500	0.5	2					7.19	13.03	0.75	0.79

Energy Sector (2 of 4)

						Emission	factors					
		CO ₂ (kg /TJ)	CH₄ (kg /TJ)	N₂O (kg /TJ)	HFCs	PFCs	SF ₆	NF ₃	NO _X	СО	NMVOCs	SO ₂
1A3b	Road Transportation	(3 /	, (3 /	, (3 /					1	<u>'</u>		
	Gasoline Diesel Oil Natural gas Biodiesel	69300 74100 56100 70800	33 3.9 92 3	3.2 3.9 3 0.6								
1A3c	Railways											
	Diesel Oil	74100	4.15	28.6								
1A3d	Water-borne Navigation											
1A3dii	Domestic Water-borne Navigation											
	Diesel Oil Residual Fuel Oil	74100 77400	7 7	2 2								
1A3eii	Off Road Motor Gasoline	69300	33	3.2								
1A4 Other		03300	33	0.2								
1A4a	Commercial/Institutional											
	Diesel Oil Residual Fuel Oil LPG Natural Gas	74100 77400 63100 56100	10 10 5 5	0.6 0.6 0.1 0.1								
1A4b	Residential											
	Other kerosene LPG Natural Gas	71900 63100 56100	10 5 5	0.6 0.1 0.1								
1A4c	Agriculture/Forestry/Fishing/Fish Farms											
1A4ci	Stationary											
	Motor gasoline Diesel oil Residual Fuel oil	69300 74100 77400	10 10 10	0.6 0.6 0.6								
1A4cii	Off-road Vehicles and Other Machinery											
	Residual Fuel oil	77400	10	0.6								
1A4ciii	Fishing (mobile combustion)											
	Motor gasoline Diesel oil	69300 74100	10 10	0.6 0.6								

94

Energy Sector (3 of 4)

				gy ocolo	. (0 0)							
						Emission	factors					
		CO₂ (kg /TJ)	CH₄ (kg /TJ)	N₂O (kg /TJ)	HFCs	PFCs	SF ₆	NF ₃	NO _X	со	NMVOCs	SO₂
1A5 Non-Sp	pecified											'
1A5 b	Mobile											
1A5bi	Non specified mobile (aviation)											
	Jet Kerosene	71500	0.5	2								
1A5bii	Non specified mobile (waterborne)											
	Diesel Oil	74100	7	2								
1A5biii	Non specified mobile (other)											
	Diesel Oil Motor Gasoline	74100 69300	3.9 33	3.9 3.2								
1B Fugitive	Emissions from Fuels											
1B1	Solid Fuels											
1B1a	Coal mining and handling											
1B1ai	Underground mines											
1B1Ai	Mining	-	10	-								
1B1Ai2	Post Mining seam gas emissions	-	2.45	-								
1B1ai3	Abandoned underground mines (m³/year)	-	0.3430	-								
1B1aii	Surface mines (m³ tonne-1)											
	Mining		0.3									
	Post Mining		0.1									
1B2	Oil and Natural Gas											
1B2a	Oil											
1B2ai	Venting (Gg/10 ⁶ m ³ gas)	0.0049	0.66	0								
1B2aii	Flaring (Gg/106 m³ gas)	2.0	0.012	0.0000230								
1B 2aiii	All Other (Gg/10 ³ m ³ oil)											
1B2Aiii2	Production and Upgrading	4.3x10 ⁻⁸	5.9x10 ⁻⁷	-				NA	NA	7.4 x10- ⁷	NA	
1B2aiii4	Refining	0	6.4x10 ⁻⁶	-				NA	NA	1.3 x10 ⁻³	NA	

Energy Sector (4 of 4)

						Emission	factors					
		CO ₂ (kg /TJ)	CH₄ (kg /TJ)	N₂O (kg /TJ)	HFCs	PFCs	SF ₆	NF ₃	NO _X	со	NMVOCs	SO₂
1B2b	Natural Gas (Gg/10 ⁶ m ³ gas)											
1B2bii	Flaring	2.0	0.012	2.3x10 ⁻⁵					NA	NA	NA	NA
1B 2biii				,	All Other							
1B2biii2	Production	3.6x10 ⁻⁵	2.74x10 ⁻³						NA	NA	2.02x10 ⁻⁴	NA
1B2biii3	Processing	1.7x10 ⁻⁴	5.42x10 ⁻⁴						NA	NA	2.49x10 ⁻⁴	NA
1B2biii4	Transmission & Storage	9.92x10 ⁻⁷	2.59x10 ⁻⁴						NA	NA	7.90x10 ⁻⁶	NA
1B2biii5	Distribution	5.99x10 ⁻⁵	1.24x10 ⁻³						NA	NA	1.80x10 ⁻⁵	NA

IPPU Sector (1 of 2)

		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NO _X	со	NMVOC _s	SO ₂
INDUS	TRIAL PROCESSES AND PRODUCT	USE							'			
2A Min	eral Industry											
2A1	Cement Production	0.515										
2A2	Lime Production	0.75										
2A3	Glass Production	0.2										
2A4	Other Process Uses of Carbonates	0.43971 (Limestone) 0.47732 (Dolomite)										
2B Che	emical Industry											
2B1	Ammonia Production	С							1 kg/ tonne ammonia	0.1 kg/tonne ammonia		
2B5	Carbide Production	1.1										
2B8	Petrochemicals & Carbon Black Production	Methanol - 0.67 Ethylene: - 0.76 (Ethane as feedstock) - 1.73 (Naphtha as feedstock) Ethylene Oxide – 0.663	Ethylene 6 (Ethane as Feedstock) 3 (Naphtha as Feedstock) Ethylene Oxide – 1.79 Methanol – 2.3 Carbon Black – 0.06									
2C	Metal Industry											
2C1	Iron & Steel Production											
	Electric Arc Furnace Basic Oxygen Furnace Sinter Coke Iron	0.08 1.46 0.2 0.56 1.35	0.07 0.0001								150 g /Mg steel	
2C2	Ferroalloy Production											
		1.4 (silicon manganese) 2.5 (ferrosilicon) 1.5(ferromanganese)	1 (FeSi) 1.2 (Si-metal)									
2C3	Aluminium Production	1.6				0.4 kg CF ₄ /t Al; 0.04 kg C ₂ F ₆ /t Al			1 kg/ Mg Al	120 kg/ Mg Al		4.5 kg/ Mg Al

IPPU Sector (2 of 2)

				Emissio	on factors							
		CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NO _X	СО	NMVOC _s	SO ₂
2E Elec	tronic Industry											
2E1	Semiconductor production					CF_4 : 0.9 kg/m ² C_2F_6 : 1 kg/m ² CHF_3 : 0.04 kg/m ² C_3F_8 : 0.05kg/m ²	0.2 kg/m ²	0.04 kg/m²				
2E3	Photovoltaics Production					CF ₄ : 0.005 g/m ² C ₂ F ₆ : 0.0002 g/m ²						
2F Proc	luct Uses as Substitutes for Ozone I	Depleting Substances										
2F1	Mobile Air-Conditioning				0.5% (assembly loss); 10% (annual leakage rate)							
2G Oth	er Product Manufacture and Use				, ,							
2G1	Electrical Equipment						0.007					
2G3a	Medical Applications			1.0								

AFOLU Sector (1 of 4)

		CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NOx	СО
AGRICU	LTURE, FORESTRY AND OTHER LAN	D USE								
3A Lives										
3A1	Enteric Fermentation		Kg/head/ <u>yr</u>							
	Dairy Cows		68							
	Other Cattle		58.65							
	Buffalo		55							
	Sheep		5							
	Goats		5							
	Camels		-							
	Horses		18							
	Mules and Asses		-							
	Swine		1							
	Poultry (Chicken)									
	Poultry (Ducks)									
	Other ¹									
3A2	Manure Management		(kg head-1 yr-1)	[kg N₂O-N (kg N in MMS)-¹]						
	Dairy Cows		31	0.005						
	Other Cattle		1.24	0.005						
	Buffalo		2	0.005						
	Sheep		0.2	0.005						
	Goats		0.22	0.005						
	Camels									
	Horses		2.19							
	Mules and Asses		_							
	Swine Poultry (Chickon)		7 0.02	0.005 0.001						
	Poultry (Chicken)			0.001						
	Poultry (Ducks) Other		0.02							

AFOLU Sector (2 of 4)

		Emission factors										
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NOx	СО		
3B Land		(t C/ha)	g/kg d.m.	g/kg d.m.					g/kg d.m.	g/kg d.m.		
3B1a	Forest Land Remaining Forest Land	Inland forest: 4.37 Peat swamp: 4.32 Mangrove: 5.17 State land: 2.02 TPA: 2.02 Drained peat swamp 2.49 Plantation forest: 2.44 Fallow:1.70 Root shoot ratio: 0.18 Root shoot ratio (mangrove): 0.49										
3B2a	Cropland Remaining Cropland	Rubber :1.95 Oil palm:1.84 Cocoa :2.35										
3B5bi	Forest Land converted to Settlement	Inland State Land Forest: 140 PRF Inland: 194 Rubber: 67.68 Oil palm:63.92										
3C Aggre	gate Sources and Non-CO ₂ Emissions											
3C1	Biomass burning											
3C1a	Biomass burning in Forest land	fraction of fuel mass 0.26	6.8g/kg d.m	0.2 g/kg d.m					1.6 g/kg d.m	104g/kg d.m		
3C1b	Biomass burning in Cropland [g GHG (kg dm burnt)-1]		2.7	0.07					2.5	9.2		
3C2	Liming											
	Limestone [tonnes of C (tonne of limestone) ⁻¹]	0.12*										
3C3	Urea application [tonnes of C (tonne of urea) ⁻¹]	0.2*										

100

AFOLU Sector (3 of 4)

		Emission factors CO2 CH4 N2O HFCs PFCs SF6 NF3									
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NOx	СО	
3C4	Direct N ₂ O Emissions from Managed S	oils [kg N2O-N (kg N	l input)-1]								
	Anthropogenic N input types to estimate annual direct N2O-N emissions produced from managed soils: • synthetic fertilizers • animal manure, compost, sewage sludge • crop residues • changes in land use or management			0.01							
	Anthropogenic N input types to estimate annual direct N2O-N emissions produced from flooded rice: • synthetic fertilizers • animal manure, compost, sewage sludge • crop residues • changes to land use or management			0.003							
	Managed organic soils Oil Palm (Organic Soils) [drained/managed organic soils]			1.2							
	Urine and dung inputs to grazed soils: CPP SO			0.02 0.01							
3C5	Indirect N ₂ O Emissions from Managed	Soils (kg N₂O-N) (kg	j NH3-N + NOx-N vo	olatilized) ⁻¹							
	N ₂ O from Atmospheric Deposition of N Volatilised from Managed Soils			0.01							
	N ₂ O from N leaching/runoff from Managed Soils			0.0075							
3C6	Indirect N2O emissions from Manure M	anagement [kg N₂O	-N (kg NH ₃ -N+ NO	_x -N volatilised) ⁻¹]							
	Poultry Manure with /Without Litter			0.01							

AFOLU Sector (4 of 4)

				Emission	factors					
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF₃	NOx	СО
	Solid Storage (Buffalo, Dairy Cows, Goats, Other Cattle, Sheep, Swine)			0.01						
	Uncovered Anaerobic Lagoon Dairy (Cows, Other Cattle, Swine)			0.01						
3C7	Rice cultivations (kg CH ₄ ha ⁻¹ day ⁻¹)									
	Irrigated (Granary)		1.6 With scaling factor of 1							
	Rainfed (Non-granary)		1.6 With scaling factor of 0.27							
	Upland		1.6 With scaling factor of 0							

Waste Sector (1 of 3)

·			Emis	ssion factors						
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NOx	СО
WASTE										
4A	Solid Waste Disposal Sites									
			Fraction of degradable organic carbon: Bulk waste: 0.17 Sewage Sludge: 0.05 Fraction of organic carbon which decomposes: 0.5 Methane correction factor (MCF): Uncategorized SWDS: 0.6 Unmanaged deep: 0.8 Managed Anaerobic: 1							
4B	Biological Treatment of Solid Wa	ste								
			4 g CH ₄ / kg waste treated	0.24 g N ₂ O /kg waste treated						
4C	Incineration and Open Burning o	f Waste								
	Incineration	Hazardous waste: Fraction dry matter content: 0.5 Fraction of carbon in dry matter content: 0.275 Fraction of fossil carbon in total carbon: 0.95 Oxidation factor: 1		Hazardous waste: 100 kg N ₂ O/Gg wet waste						

Waste Sector (2 of 3)

			Emis	ssion factors						
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF₃	NOx	СО
		Clinical Waste: Fraction dry matter content: 0.65 Fraction of carbon in dry matter content: 0.6 Fraction of fossil carbon in total carbon: 0.4 Oxidation factor: 1 Fossil Liquid Waste: Fraction of fossil content of liquid waste: 0.8 Oxidation factor:1		Clinical waste: 100 kg N ₂ O/ Gg wet waste						
	Open Burning	Municipal solid waste: Fraction dry matter content: 0.43 Fraction of carbon in dry matter content: 0.46 Fraction of fossil carbon in total carbon: 0.14 Oxidation factor: 0.58	Municipal solid waste: 6500 kg CH ₄ / Gg wet waste	Municipal solid waste: 150 kg N ₂ O/Gg Dry matter						
4D Waster	water Treatment and Discharge									
4D1	Domestic Wastewater		Emission factor (Kg CH ₄ /kg BOD): $EF_{j} = B_{o} \times MCF_{j}$ $B_{o} = 0.6 \text{ kg CH4/kg BOD}$ $MCF_{i} = \text{an indication of the degree to which the}$	Emission factor for indirect N ₂ O from waste water: 0.005 kg N ₂ O/kg N						

Waste Sector (3 of 3)

			Emission factors							
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	NF ₃	NOx	CO
			system is anaerobic as below: Centralised Aerobic Treatment Plant: 0 Septic Tank: 0.3 Latrine 3 (Pour Flush): 0.42 Sea, River and Lake Discharge: 0.06							
4D2	Industrial Wastewater									
			Emission factor (kg CH ₄ /kg COD): • POME: 0.225 • Natural Rubber (SMR): 0.2 • Natural Rubber (Latex): 0.2 • Paper & Pulp: 0.125 • Petroleum Refineries: 0.125 • Meat & Poultry: 0.125							

105

Table A - 3: Summary of Assumptions and Activity Data Sources

Sector & Sub Sector	Activity data	Assumptions	Data source
1. Energy Sector			
1 Fuel Combustion Activitie	S		
1A1 Energy Industries			
1A1a - Electricity and Heat	Fuel Types in energy-	The type of fuels used for electricity	NEB
Production	producing industries	generation combined heat and power generation.	
1A1ai - Electricity	Fuel types from	All fuel consumption from thermal	NEB
Generation	thermal power	stations.	Energy Commission
	plants.Biomas and	Coal has been segregated into	
	Biogas are included.	Bituminous, Sub- bituminous and Lignite.	
1A1aii - Combined Heat	Fuel types from the	All fuel consumption from self-	NEB
and Power Generation	production of both heat	generation stations.	
(CHP)	and power plants.		
	Biomas and biogas is		
1A1aiii - Heat Plants	included.	No production of boot for cale by pine	NEB
TATalli - neat Plants	No activity data	No production of heat for sale by pipe network.	
1A1b - Petroleum Refining	Refining of petroleum	Estimated from the refineries and	NEB
	products including	petroleum losses and own use.	
	losses & own use for		
	generation of electricity and heat.		
1A1c - Manufacture of Solid		∖ ∕ Industries	
1A1ci - Manufacture of	No activity data	No combustion for production of coke,	
Solid Fuels	,	brown coal briquettes and patent fuel.	
1A1cii Other Energy	Own use from the oil	Estimated from the gas plants' losses	NEB
Industries	and gas extraction and	and own use.	
	processing of natural gas		

Sector & Sub Sector	Activity data	Assumptions	Data source
1A2 Manufacturing Industrie	es and Construction		
1A2a - Iron and Steel	Combustion of fuels by sub- sectors in manufacturing specific to iron and steel,	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub-categories fuel consumption is multiplied to the NEB 2017- NEB 2019 energy source.	Final energy consumption by sub- sectors in Manufacturing Sector of NEB 2016, NEB 2017 -2019
1A2b - Non-Ferrous Metals	Combustion of fuels by sub- sectors in manufacturing specific to non- ferrous metals	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 -2019
1A2c - Chemicals	Combustion of fuels by sub-sectors in manufacturing specific to Chemicals	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017- NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2d - Pulp, Paper and Print	Combustion of fuels by sub-sectors in manufacturing specific to pulp, paper and print	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019

Sector & Sub Sector	Activity data	Assumptions	Data source
		This percentage for the sub-categories fuel consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	
1A2e - Food Processing, Beverages and Tobacco	Combustion of fuels by sub-sectors in manufacturing specific to Food Processing, Beverages and Tobacco	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017 NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2f - Non-Metallic Minerals	Combustion of fuels by sub-sectors in manufacturing specific to Non-Metallic Minerals	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017- NEB 2019 energy source. consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2h - Machinery	Combustion of fuels by sub-sectors in manufacturing specific to Machinery	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017 NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2I - Mining (excluding fuels) and Quarrying	No activity data Accounted as Non- specified Industry includes 1.A.2.i Mining	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019

-	_
C	\supset
-	'n

Sector & Sub Sector	Activity data	Assumptions	Data source
	(excluding fuels) and quarrying and 1.A.2.k Construction	manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub-categories fuel consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	
1A2j - Wood and wood products	Combustion of fuels by sub-sectors in manufacturing specific to Wood and wood products	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2k - Construction	No activity data Accounted as Non- specified Industry includes 1.A.2.i Mining (excluding fuels) and quarrying and 1.A.2.k Construction	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017 - NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2I - Textile and Leather	Combustion of fuels by sub- sectors in manufacturing specific to Textile and Leather	The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017- NEB 2019 energy source.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019
1A2m - Non-specified Industry	Combustion of fuels at not elsewhere specified	Any combustion that cannot be allocated to one of the other subcategories.	Final energy consumption by sub-sectors in Manufacturing Sector of NEB 2016, NEB 2017 - 2019

Sector & Sub Sector	Activity data	Assumptions	Data source
440 Transcript		The percentage of fuel consumption by sub- categories of ISIC industry were based on survey data (520 manufacturing companies in Peninsular Malaysia) produced by NEB in 2016. This percentage for the sub- categories fuel consumption is multiplied to the NEB 2017- 2019 energy source.	
1A3 - Transport 1A3 a – Civil Aviation	Fuel consumption ratio	The ratio of fuel consumption for	NEB 2017 - 2019
	of ATF	domestic aviation to international aviation is 20:80 based on percentage ratio computed in 2016. The total amount is based on civil consumption. Not including the military.	Survey data from MAB comprising of MAS, Firefly and Mas Wings, Air Asia X, Air Asia (2015)
1A3al – International	Fuel consumption ratio	The total amount of fuel consumption	NEB 2017 - 2019
Aviation (Bunker)	of ATF	for domestic aviation is based on survey collected from the civil domestic operators. Not including the military.	Survey data from MAB comprising of MAS, Firefly and Mas Wings, Air Asia X, Air Asia (2015) and Military (TUDM/TDM/TLM) (2014)
1A3aii – Domestic Aviation	Fuel consumption ratio of ATF	The total amount of fuel consumption for domestic aviation is based on survey collected from the civil aviation domestic operators. Not including the military aviation fuel consumption.	NEB 2017 - 2019 Survey data from MAB comprising of MAS, Firefly and Mas Wings, Air Asia X, Air Asia (2015)
1A3b – Road Transportation	Fuel type used in Road transport	The percentage for fuel consumption specific to motor gasoline/ petrol disaggregated from the total EBT for transport sector and Other Nonspecified (Mobile). For road transport, data from KPDNHEP is used. The percentage for petrol from road transport is about 74%.	NEB 2017- 2019 Motor gasoline and Diesel from KPDNHEP Survey data from Military (TUDM/TDM/TLM) (2014), and Railway (KTMB)

Sector & Sub Sector	Activity data	Assumptions	Data source
		The percentage for fuel consumption for diesel in the road transport is about 94% of total diesel. The assumption derived from KPDNHEP data Remaining diesel is assumed for Offroad transportation (1A 3 e). The natural gas consumption by road transportation is 100%.	
1A3c - Railways	Diesel used in transport	The percentage of total diesel consumption based on survey data collected is about 0.2 to 0.3%.	Survey data from KTMB
1A3d – Water-borne Navigation	Diesel and Fuel Oil in Transport	25% of total diesel consumption in the transport sector. 100% of residual fuel oil consumption is by the water- bornenavigation. The percentage assumption for diesel is 25% based on expert judgement from the Maritime Department Malaysia (unpublished study by Maritime Institute of Malaysia taking into account of actively trading Malaysian registered vessels 400GTand above). There is no available method at maritime department prior to year 2020 to separate the fuel consumptions between domestic ships and international ships.	NEB 2017 - 2019 Survey data from Maritime Department, Malaysia
1A3di – International water- borne (bunker)	Fuel Oil in Transport	100% of fuel oil consumption in the transport sector.	NEB 2017- 2019
1A3dii – Domestic water- borne navigation	Diesel and Fuel Oil in Transport	25% of total diesel consumption in the transport sector from expert judgement of Maritime Department, Malaysia.	NEB 2017-2019 Survey data from Maritime Department, Malaysia

Sector & Sub Sector	Activity data	Assumptions	Data source
		100% of fuel oil consumption in the transport sector.	
1A3e – Other	Diesel	The percentage for fuel consumption for	NEB 2017- 2019
transportation Off Road	Diesei	diesel in the road transport is about 6%	KPDNHEP
Transportation		of total diesel.	N DIVILE
1A4 – Other Sectors		or total aloosii	
1A4a	Fuel types in the	Percentage of fuel consumption is	NEB 2017 - 2019
Commercial/Institutional	commercial sector	based on EBT of reporting year.	
1 A 4 b Residential	Fuel types in the	Percentage of fuel consumption is	NEB 2017 - 2019
	residential sector	based on EBT of reporting year.	
1A4c Agriculture/	Ratio of fuel	The ratio of fuel consumption of mobile	NEB 2017 – 2019
Forestry/Fishing/Fish	consumption (i.e.	and stationary is 95:5.	Statistic Department, Malaysia
farms	Gasoline, diesel, fuel	5% of the fuel consumption is for	
	oil) between mobile	stationary and 95% of the consumption	
	and stationary	is for mobile.	
1A4ci Stationary	Ratio of fuel	5% of the fuel consumption is for	NEB 2017 – 2019
	consumption (i.e.	stationary.	Statistic Department, Malaysia
	Gasoline, diesel, fuel		
	oil) between mobile		
444aii Off road vahialaa	and stationary Ratio of fuel	TO/ of the first consumention is for	NED 2047 2040
1A4cii Off-road vehicles and Other Machinery	Ratio of fuel consumption (i.e.	5% of the fuel consumption is for stationary	NEB 2017 – 2019 Statistic Department, Malaysia
and Other Machinery	Gasoline, diesel, fuel	Stationary	Statistic Department, Malaysia
	oil) between mobile		
	and stationary		
1A4ciii Fishing (mobile	Ratio of fuel	95% of the fuel consumption is for	NEB 2017 – 2019
combustion)	consumption (i.e.	mobile.	Statistic Department, Malaysia
	Gasoline, diesel, fuel		Commence 2 Sparinieris, manayona
	oil) between mobile		
	and stationary		

Sector & Sub Sector	Activity data	Assumptions	Data source
1A5b - Non specified mobile	-		
1A5bi Non specified mobile (aviation)	Ratio of fuel consumption from survey data and EBT reporting year for ATF and AV gas	3.5% of the total fuel consumption for ATF and AV gas	Survey data from Military (TUDM/TDM/TLM) (2014)
1A5bii Non specified mobile (waterborne)	Ratio of fuel consumption from survey data and EBT reporting year for diesel	0.41% of the total fuel consumption for diesel	Survey data from Military (TUDM/TDM/TLM) (2014)
1A5biii Non specified mobile (other)	Ratio of fuel consumption from survey data and EBT reporting year for diesel	0.25% of the total fuel consumption for diesel and 0.05% of the total fuel consumption for petrol	Survey data from Military (TUDM/TDM/TLM) (2014)
1B2 Fugitive Oil and Gas			
1B2 a - Oil			
1B2ai - Venting	Crude oil production	Actual venting production from PETRONAS	NEB 2017-2019, Petronas, EPU
1B2aii - Flaring	Crude oil production	Actual flaring production from PETRONAS	NEB 2017-2019, Petronas, EPU
1B2aiii - All Other			
1B2aiii1 - Exploration	Not accounted	Emission factor not applicable	
1B2aiii2 - Production & Upgrading	Crude oil production	Assume total amount of oil from oil Production occurs at the oil wellhead.	NEB 2017-2019
1B2aiii3 - Transport	Not accounted	Emission factor not applicable	
1B2aiii4 - Refining	Crude oil refineries	Assume the total amount of produces final refined products.	NEB 2017-2019
1B2aiii5 - Distribution of oil Products	Not accounted	Emission factor not applicable	
1B2aiii6 - Other	Not accounted	Emission factor not applicable	

Sector & Sub Sector	Activity data	Assumptions	Data source
1B2b – Natural gas			
1B2bi - Venting	Not applicable	Not applicable	
1B2bii - Flaring	Natural Gas production	Actual flaring production from PETRONAS	NEB 2017-2019, Petronas, EPU
1B2biii – All Other			
1B2biii1 – Exploration	Not accounted	Emission factor not applicable	
1B2biii2 - Production	Natural Gas production	Assume the total amount of gas production from gas fields.	NEB 2017-2019
1B2biii3 – Processing	Natural gas production	Estimated from natural gas processing facilities	NEB 2017-2019
1B2biii4 - Transmission and Storage	Natural Gas production	Estimated from natural gas processing including import of LNG.	NEB 2017-2019
1B2biii5 – Distribution	Natural gas production	Estimated from natural gas transmission and storage including export of LNG.	NEB 2017-2019
1B2biii6 - Other	Not accounted	Emission factor not applicable	
1B3 - Other emissions	No activity data		
from energy production			
2. Industrial Product & Prod	uct Use Sector		
2A Mineral Industry			
2A1 Cement Production	Clinker production	CNCA agreed to maintain the use of national lime fraction at 65.6%	Malaysian Cement & Concrete Association (CNCA)
2A2 Lime Production	Lime production	Type of lime: High-calcium lime	Department of Mineral & Geoscience, Malaysia (JMG) Department of Statistics Malaysia (DOSM)
2A3 Glass Production	Glass production	Annual cullet ratio at 25%	Department of Mineral & Geoscience, Malaysia (JMG) Malaysia Sheet Glass (M) Sdn Bhd
2A4 Other Process Uses of Carbonates	Limestone production Dolomite production	Total accounted limestone production exclude limestone for cement manufacturing, use for rock aggregates, use in lime production and use in agriculture.	Department of Mineral & Geoscience, Malaysia (JMG)

Sector & Sub Sector	Activity data	Assumptions	Data source
		Both limestone and dolomite activity data also consider the stock exchange, where imports are added and exports are removed from the activity data.	
2B Chemical Industry			
2B1 Ammonia Production	Ammonia production Urea production	CO ₂ recovered for urea production is deducted from the activity data.	Petroliam Nasional Berhad (Petronas)
2B5 Carbide Production	Carbide production	Calcium carbide production does not emit CH ₄	MCB Industries Sdn Bhd
2B8 Petrochemical & Carbon Black Production	Ethylene production Methanol production Ethylene Oxide production	Improvement was made in Ethylene production, whereby actual data was obtained for feedstock disaggregation.	Petroliam Nasional Berhad (Petronas) Lotte Titan Chemicals Sdn Bhd
2C Metal Industry			
2C1 Iron & Steel Production	Iron production - Pig Iron Steel production using process of Electric Arc Furnace and Basic Oxygen Furnace	99% of the steelmaking productions in Malaysia is using Electric Arc Furnace (EAF) in the year 2017 to 2018. For year 2019, Basic Oxygen Furnace (BOF) was used by Alliance Steel. The emission for iron making in blast furnaces will be quantified using pig iron production (EF=1.35 tonne CO ₂ per tonne pig iron produced).	Malaysian Iron & Steel Federation (MISIF) Malaysia Steel Association (MSA) Southern Steel Ann Joo Steel Malaysia Steel works AmSteel Eastern Steel Alliance Steel
2C2 Ferroalloy Production	Ferroalloy production	Production capacity of Pertama Ferroalloy was used for calculation in absence of actual data from the company.	Sakura Ferralloy Om Material Sdn Bhd Pertama Ferroalloy

Sector & Sub Sector	Activity data	Assumptions	Data source
2C3 Aluminium	Aluminium production	The plant is running at 100%	Department of Mineral & Geoscience, Malaysia
Production		production capacity.	(JMG)
2E Electronics Industry			
2E1 Semiconductor	Semiconductor	Activity data derived from production	Multiple references on industry plant capacity
Production	production	capacity.	
2E3 Photovoltaics	Photovoltaics	Activity data derived from production	Multiple references on industry plant capacity
Production	production	capacity.	
2F Product Uses as Substi	tutes for ODS		
2F1b Mobile Air-	Amount of HFC	Assembly losses 0.5%	Ministry of Transport Malaysia (MOT),
Conditioning	charged into new	Does not account Disposal	
	systems		Malaysian Automotive Association (MAA)
	Number of new non-		
	commercial vehicles		
	Number of registered		
	non-commercial		
	vehicles		
2G Other Product Manufac	ture & Use		
2G1b SF ₆ Use in Electrical	Total nameplate	Does not account 2G1a: Manufacture	Tenaga Nasional Berhad (TNB), Sabah Electricity
Equipment	capacity	and 2G1c: Disposal.	Sdn. Bhd. (SESB), Sarawak Energy (SEB)
2G3a N₂O in Medical	Amount of N.O. goo	Data obtained from main stakeholder.	Linda (M) Cdn Bhd (Coo cumplion)
_	Amount of N ₂ O gas	Data obtained from main stakeholder.	Linde (M) Sdn Bhd. (Gas supplier)
Applications	used		
3. Agriculture, Forestry and		No. 1sts and a to October 11 (11 0040)	Library Color (Color (D)(O) FACOTAT
3.A.1 Enteric Fermentation	Livestock population numbers	- No dairy cows in Sarawak till 2018	Livestock Statistics (DVS), FAOSTAT
3.A.2 Manure Management		Proportions of animal waste	Livestock Statistics
	Fractions of Manure,	management system	
	Waste Management	,	Expert Judgment
	Systems		
3.C.1.b Biomass Burning	,	Burning practices only on paddy field	
3		at proportion 10% of irrigated granary	

$\stackrel{=}{\sim}$
တ

Sector & Sub Sector	Activity data	Assumptions	Data source
	Fraction of area burnt in paddy fields	area during dry season Agricultural residues were burnt completely (Combustion factor = 1)	Agrofood Statistics 2020, MAFI; Document provided by DOA, 2022.
3.C.2 Liming	Annual amount of subsidised lime for paddy	Subsidy scheme of liming only applied for paddy crop started in 2011 and no record purchased/used directly by farmers	Document provided by MAFI, 2022.
3.C.3 Urea Application in	Annual amount of import and export for urea	Consumptions of urea are based from the total of import and production	Harmonized system data
Cropland	Annual amount of urea production	minus the export amount	Document provided by PETRONAS, 2022
4 WASTE			
4A Solid Waste Disposal Sites	Population Data		Population and Housing Census in 2010. Data is acquired from Department of Statistics Malaysia (DOSM) based on 2010 population census
	Waste per capita	Default IPCC Regional values for Southeast Asia were obtained from 2006 GL for the period from 1970 to 2000 Extrapolated values of MSW composition by percent for the period of 2001 to 2004 were obtained from the IPCC default for South-East Asia (2001) and the 2004 data from the study by JICA (2006) The period from 2005 to 2012 utilized the extrapolated values obtained from JICA (2006) After 2013, using the actual data from the Survey on Solid Waste Composition, Characteristics & Existing	Waste composition varies widely between urban and rural populations within the countries. (Table 3.5, Chapter 3, Vol. 5, 2006GL) Survey on Solid Waste Composition, Characteristics & Existing Practice of Solid Waste Recycling in Malaysia (2012)

Sector & Sub Sector	Activity data	Assumptions	Data source
		Practice of Solid Waste Recycling in Malaysia (2012)	
	Sludge Disposed at SWDS		Data collected from Indah Water Konsortium and Sewerage Services Department Sarawak
4B Biological Treatment of Solid Waste	Annual amount treated by treatment facility of EFB biological	The annual amount of EFB utilized in composting is calculated by fixing the operation days to 300 days in a year because generally for palm oil mills, the operating days per month is 25 days.	Surveys conducted by MPOB and DOE.
4C1 Incineration	Annual amount of Waste Incinerated		Data is acquired from DOE database.
4C2 Open Burning	Rural Population		Population and Housing Census in 2010 Data is acquired from Department of Statistics Malaysia (DOSM) based on 2010 population census
	Fraction of population Burning Waste	Only 1% of rural population practices open burning as a mean of waste disposal	Data is acquired from reliable national source through discussion. (Expert judgement)
	Per Capita Waste Generation (MSWp)		Data was taken from JPSPN Study 2013. Waste Characterization (Expert judgement)
	Fraction of the waste amount burned relative to the total amount of waste treated		Default value based on 2006GL (Section 5.7.1, p 5.23, 2006 GL)
4D1 Domestic Wastewater	Urban and rural population		Population and Housing Census in 2010 Data is acquired from Department of Statistics Malaysia (DOSM) based on 2010 population census
	Degradable organic component (BOD)	The BOD or degradable organic component in wastewater, 15.9 kg/person/year wastewater is derived from 56 g/PE/day (MSIG Vol IV) with PE	Malaysian Sewerage Industry Guidelines (MSIG) Vol. IV, published by National Water Services Commission (SPAN)

Sector & Sub Sector	Activity data	Assumptions	Data source
		per population ratio of 0.78 as shown in, the equation below. The BOD value used for Malaysia (43.56 g/person/day) is within the IPCC BOD range value for Asia, Middle East, Latin America of 33-44 g/person/day Correction factor is 1.0 is used as industrial wastewater is not collected into the sewer system.	
		Inventory of sewage treatment system (i.e. numbers, capacity and type) was obtained from the following sources: Peninsular Malaysia 1990-1997: Data extrapolation based on IWK Asset Database 1998-2014: IWK Asset 2015 -2016: SPAN (Malaysia Water Industry Guide (MWIG); published by Malaysian Water Associations (MWA)) 2017-2019:SPAN (Water and Sewerage Fact Book) Sabah 1990-2016: GHG Data Inventory Improvement Study conducted by Consultant (North Borneo Environmental Services Sdn. Bhd.) 2017-2019: Data extrapolation based on GHG Data Inventory Improvement Study conducted by Consultant.	

Sector & Sub Sector	Activity data	Assumptions	Data source
		 Sarawak 1990-2007: Data extrapolation based on JPP Sarawak database 2007-2019: JPP Sarawak database Degree of utilization by treatment type for urban and rural areas were identified based on expert judgment as follows: Urban Centralised Aerobic Treatment Plant Septic System Sea, River and Lake Discharge Rural Septic System Latrine 3 (Pour Flush) Sea, River and Lake Discharge 	
	Per capita protein consumption	1960 to 2009: Data used for domains [Food Balances (-2013, old methodology and population)] 2010 to 2019: Data used for domains [Food balances (2010-2019)]	Based on yearly time range for Protein Supply Quantity (g/capita/day), Food and Agriculture Organization Statistic (FAOSTAT)
	Sludge removed		Dokuz Eylul University (DEU) Engineering Faculty. Biological Treatment Processes., 2006. (http://web.deu.edu.tr/atiksu/ana07/4thset.pdf)
	Methane Recovered	Methane recovery from domestic wastewater treatment plants is very scarce. Thus, it is assumed that the methane recovery from domestic wastewater treatment plant is negligible.	

Sector & Sub Sector	Activity data	Assumptions	Data source
	Nitrogen removed with	No study has been conducted in the	
	sludge (NSLUDGE)	country to measure the amount of	
		Nitrogen in sludge.	
		Hence, 2006 GL default value of zero, 0	
		kg N/yr is being used in this estimation.	
4D2 Industrial Wastewater	Total Industry Product:		
Treatment and Discharge			
	Palm Oil		MPOB Yearly Statistics
	Natural Rubber		Malaysian Rubber Statistics 2008, 2015 & 2021
	Pulp & Paper		Annual production of pulp and paper
	Petroleum		
	Refineries		National Energy Balance 2019
	Meat & Poultry		FAOSTAT 2020
	Wastewater generated		
	per ton product		
	(m3/ton product):		
	POME: 3.05		Vijaya et al., 2008, JOPR 20: 484-494;
			Vijaya et al., 2010, Amer. J. Geosc. 1(1): 1-6.
	Natural Rubber		Zaid I., 1993,
	(SMR): 19.5		Publication of Ministry of Science and the
			Environment, Malaysia, 137-151.
	Natural Rubber		
	(Latex): 10.5		
	Pulp & Paper: 85		IPCC default value (Table 6.10, Chapter 6, Vol. 5,
	Petroleum Refineries:		2006 IPCC Guidelines
	0.6		
	Meat & Poultry: 13		
	Chemical oxygen		
	demand (COD) kg		
	COD/m3 waste water		
	generated:		

Sector & Sub Sector	Activity data	Assumptions	Data source
	POME:53		Survey on actual status of POME in palm oil mills,
			2007 – 2008; Loh et al. 2009
	Natural Rubber		Zaid et al, 2006, Proc. IRRDB Conf.;
	 Natural Rubber 		Pretibaa et al, 2007, Proc. IRRDB Conf.; John, 1982,
	(SMR):1.5		Proc. Workshop;
	 Natural Rubber 		Zaid, 1993;
	(Latex): 6		Publication of Ministry of Science and the
			Environment, Malaysia, 137-151
	Pulp & Paper:2		IPCC default value (Table 6.10, Chapter 6, Vol. 5,
	Petroleum Refineries:1		2006 IPCC Guidelines
	Meat & Poultry: 4.		
	Total Recovered	The captured methane used for energy	Vijaya et al., 2010
	Methane	combustion is 100% recovered; and	
	Annual total methane	The flared methane is 50% recovered.	
	recovery		
	POME:36.41 kg/t		
	methane gas		
	generated		

Table A - 4: Comparison of Emissions and Removals by Sector between BUR3 and BUR4

Summary of Emission Trend by Sector in BUR3 (Gg CO₂ eq.): 1990 – 2007

Greenhouse Gas Source and Sink by Sector (BUR3)	1990	1991	1992	1993	1994	1995	1996	1997	1998
Energy	67,293.03	77,931.98	84,252.57	85,310.29	92,049.66	95,889.68	111,291.05	129,598.70	118,850.16
IPPU	4,435.75	4,643.94	4,505.39	4,787.77	5,678.85	6,149.09	8,223.95	8,987.28	8,695.06
Agriculture	7,090.82	6,948.50	6,998.18	7,578.21	8,183.89	7,486.21	7,320.58	8,635.82	8,967.72
LULUCF	-95,727.80	-188,300.82	-174,418.24	-205,785.50	-74,320.11	-206,705.17	-220,268.69	-223,920.58	-224,111.57
Waste	11,124.91	11,284.57	11,586.10	12,644.83	12,605.09	13,273.39	13,934.13	14,671.01	14,087.28
Total Including LULUCF	-5,783.28	-87,491.84	-67,076.00	-95,464.41	44,197.39	-83,906.80	-79,498.98	-62,027.77	-73,511.34
Total Excluding LULUCF	89,944.51	100,808.99	107,342.23	110,321.10	118,517.49	122,798.37	140,769.71	161,892.81	150,600.23
Greenhouse Gas									
Source and Sink by Sector (BUR3)	1999	2000	2001	2002	2003	2004	2005	2006	2007
Source and Sink	1999 131,445.53	2000 143,141.29	2001 149,345.67	2002 156,423.68	2003 168,897.32	2004 184,033.25	2005 198,514.01	2006 196,604.24	2007
Source and Sink by Sector (BUR3)									
Source and Sink by Sector (BUR3) Energy	131,445.53	143,141.29	149,345.67	156,423.68	168,897.32	184,033.25	198,514.01	196,604.24	212,781.48
Source and Sink by Sector (BUR3) Energy IPPU	131,445.53 9,111.46	143,141.29 11,531.89	149,345.67 11,754.71	156,423.68 13,538.47	168,897.32 14,985.33	184,033.25 15,317.10	198,514.01 15,101.60	196,604.24 15,999.80	212,781.48 16,153.40
Source and Sink by Sector (BUR3) Energy IPPU Agriculture	131,445.53 9,111.46 8,637.64	143,141.29 11,531.89 8,752.54	149,345.67 11,754.71 7,867.92	156,423.68 13,538.47 8,772.08	168,897.32 14,985.33 8,745.48	184,033.25 15,317.10 9,558.21	198,514.01 15,101.60 10,253.15	196,604.24 15,999.80 9,747.13	212,781.48 16,153.40 10,785.13
Source and Sink by Sector (BUR3) Energy IPPU Agriculture LULUCF	131,445.53 9,111.46 8,637.64 -243,825.20	143,141.29 11,531.89 8,752.54 -180,945.46	149,345.67 11,754.71 7,867.92 -222,077.04	156,423.68 13,538.47 8,772.08 -233,038.97	168,897.32 14,985.33 8,745.48 -239,692.27	184,033.25 15,317.10 9,558.21 -228,595.50	198,514.01 15,101.60 10,253.15 -197,932.85	196,604.24 15,999.80 9,747.13 -230,265.67	212,781.48 16,153.40 10,785.13 -212,600.23

Summary of Emission Trend by Sector in BUR3 (Gg CO₂ eq.): 2008 – 2016

Greenhouse Gas Source and Sink by Sector (BUR3)	2008	2009	2010	2011	2012	2013	2014	2015	2016
Energy	220,641.73	210,296.31	226,186.63	225,060.62	240,371.88	247,534.35	253,517.24	256,034.18	251,695.01
IPPU	16,893.78	17,061.40	16,471.77	17,058.02	19,743.89	19,549.98	20,257.83	22,362.22	27,348.83
Agriculture	11,192.45	9,742.52	10,141.99	9,906.24	11,025.47	10,551.01	11,081.37	10,670.85	10,627.72
LULUCF	-228,475.01	-238,387.18	-234,680.07	-239,025.77	-256,761.03	-259,119.32	-263,830.62	-248,186.40	-241,344.74
Waste	25,913.45	25,992.89	25,562.75	26,957.50	26,892.82	27,695.75	28,216.51	28,857.81	27,161.79
Total Including LULUCF	46,166.40	24,705.93	43,683.07	39,956.61	41,273.03	46,211.77	49,242.33	69,738.67	75,488.61
Total Excluding LULUCF	274,641.40	263,093.11	278,363.14	278,982.38	298,034.06	305,331.08	313,072.95	317,925.07	316,833.35

Note: As per Technical Annex in BUR3 with the totals corrected

Summary of Emission Trend by Sector in BUR4 (Gg CO₂ eq.): 1990 – 2007

Greenhouse Gas Source and Sink by Sector (BUR4)	1990	1991	1992	1993	1994	1995	1996	1997	1998
Energy	66,460.16	77,407.09	83,782.53	86,064.80	92,977.76	97,167.05	113,196.64	132,293.95	121,488.57
IPPU	4,435.75	4,643.94	4,505.39	4,787.77	5,678.85	6,149.09	8,223.95	8,987.28	8,695.06
Agriculture	7,094.44	6,949.26	7,000.41	7,579.01	8,184.72	7,486.34	7,320.68	8,635.95	8,976.49
LULUCF	-95,913.08	-188,378.16	-165,187.38	-204,288.09	-188,627.10	-200,932.81	-209,648.04	-224,679.16	-217,982.60
Waste	11,115.37	11,274.93	11,599.95	12,660.11	12,612.60	13,298.28	13,960.04	14,696.15	14,136.77
Total Including LULUCF	-6,807.36	-88,102.95	-58,299.11	-93,196.39	-69,173.17	-76,832.05	-66,946.74	-60,065.83	-64,685.71
Total Excluding LULUCF	89,105.72	100,275.22	106,888.27	111,091.69	119,453.92	124,100.75	142,701.30	164,613.33	153,296.90
Greenhouse Gas Source and Sink by Sector (BUR4)	1999	2000	2001	2002	2003	2004	2005	2006	2007
Energy	134,703.75	146,926.37	153,192.76	159,623.46	171,907.05	187,454.08	202,676.41	200,696.93	215,930.15
IPPU	9,111.46	11,531.89	11,754.71	13,538.47	14,985.33	15,317.10	15,101.60	15,999.80	16,153.40
Agriculture	8,637.78	8,752.57	7,869.50	8,779.28	8,752.51	9,565.14	10,265.04	9,754.19	10,792.33
LULUCF	-239,079.01	-169,397.24	-210,378.58	-238,613.80	-239,908.21	-224,169.43	-197,076.76	-233,977.99	-206,371.10
Waste	16,295.20	16,717.25	17,718.24	18,145.21	19,816.02	20,744.58	22,000.75	23,538.92	23,996.43
Total Including LULUCF	-70,330.82	14,530.85	-19,843.36	-38,527.38	-24,447.30	8,911.48	52,967.03	16,011.86	60,501.21
Total Excluding LULUCF	168,748.19	183,928.08	190,535.21	200,086.41	215,460.92	233,080.91	250,043.80	249,989.85	266,872.31

Summary of Emission Trend by Sector in BUR4 (Gg CO₂ eq.): 2008 – 2019

Greenhouse Gas Source and Sink by Sector (BUR4)	2008	2009	2010	2011	2012	2013	2014	2015	2016
Energy	225,511.09	214,900.73	232,182.53	230,603.00	246,235.17	251,780.66	255,079.75	256,850.16	253,156.64
IPPU	16,893.78	17,061.40	16,471.77	17,042.27	19,714.55	19,501.67	20,235.40	22,243.93	23,746.04
Agriculture	11,192.77	9,750.72	10,155.20	9,906.28	11,027.86	10,558.66	11,095.67	10,647.03	10,711.36
LULUCF	-228,672.30	-240,533.81	-237,394.69	-241,252.18	-246,470.68	-248,806.44	-249,952.54	-244,032.12	-215,375.05
Waste	26,011.19	26,095.32	25,688.39	27,081.76	27,031.93	27,839.01	28,377.66	28,783.91	26,565.41
Total Including LULUCF	50,936.53	27,274.36	47,103.20	43,381.13	57,538.83	60,873.56	64,835.93	74,492.91	98,804.40
Total Excluding LULUCF	279,608.83	267,808.17	284,497.89	284,633.31	304,009.51	309,680.00	314,788.47	318,525.03	314,179.45

Greenhouse Gas Source and Sink by Sector (BUR4)	2017	2018	2019
Energy	252,710.49	255,231.55	259,326.11
IPPU	24,203.62	26,697.07	32,853.80
Agriculture	11,063.54	10,690.29	9,921.71
LULUCF	-243,369.73	-241,264.08	-214,714.54
Waste	28,585.40	28,247.87	28,256.59
Total Including LULUCF	73,193.32	79,602.70	115,643.68
Total Excluding LULUCF	316,563.05	320,866.78	330,358.21

Table A - 5: Comparison of Emissions and Removals by Gas between BUR3 and BUR4

Summary of Emission Trend by Gas in BUR3 (Gg CO₂ eq.): 1990 – 1996

Greenhouse Gas Source and Sink by Gas (BUR3)	1990	1991	1992	1993	1994	1995	1996
CO ₂ Emissions Including CO ₂ From LULUCF	-30,365.70	-113,255.43	-93,676.70	-125,497.16	13,063.55	-116,943.68	-115,083.42
CO ₂ Emissions Excluding CO ₂ From LULUCF	65,366.54	75,046.14	80,744.23	80,288.70	87,384.66	89,761.65	105,185.39
CH ₄ Emissions Including CH ₄ From LULUCF	848.45	893.08	925.25	1,047.95	1,073.72	1,167.80	1,270.11
CH ₄ Emissions Excluding CH ₄ From LULUCF	848.31	893.05	925.17	1,047.94	1,073.69	1,167.80	1,270.10
N ₂ O Emissions Including N ₂ O From LULUCF	11.31	11.53	11.64	12.87	14.40	12.89	12.86
N ₂ O Emissions Excluding N ₂ O From LULUCF	11.31	11.53	11.64	12.86	14.40	12.89	12.86
HFC (CO ₂ eq)	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
PFC (CO ₂ eq)	NA,NE, NO	NA,NE, NO	NA,NE, NO	NA,NE, NO	NA,NE, NO	NA,NE, NO	NA,NE, NO
SF ₆ (CO ₂ eq)	0.23	0.23	0.23	0.23	0.23	0.23	0.50
Others (NF ₃) (CO ₂ eq)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
Total Including LULUCF (CO ₂ eq)	-5,783.28	-87,491.84	-67,076.00	-95,464.41	44,197.39	-83,906.80	-79,498.98
Total Excluding LULUCF (CO ₂ eq)	89,944.51	100,808.99	107,342.23	110,321.10	118,517.49	122,798.37	140,769.71

Summary of Emission Trend by Gas in BUR3 (Gg CO₂ eq.): 1997 – 2003

Greenhouse Gas Source and Sink by Gas (BUR3)	1997	1998	1999	2000	2001	2002	2003
CO ₂ Emissions Including CO ₂ From LULUCF	-101,472.54	-112,916.26	-120,538.44	-45,830.17	-81,236.95	-83,570.50	-76,817.36
CO ₂ Emissions Excluding CO ₂ From LULUCF	122,448.21	111,205.89	123,286.93	135,115.33	140,842.00	149,477.14	162,883.40
CH ₄ Emissions Including CH ₄ From LULUCF	1,372.96	1,357.05	1,467.81	1,553.91	1,606.36	1,623.99	1,711.31
CH ₄ Emissions Excluding CH ₄ From LULUCF	1,372.96	1,356.74	1,467.80	1,553.90	1,606.30	1,623.73	1,711.06
N₂O Emissions Including N₂O From LULUCF	16.88	17.90	17.67	18.28	15.55	18.62	18.79
N ₂ O Emissions Excluding N ₂ O From LULUCF	16.88	17.90	17.67	18.28	15.55	18.61	18.78
HFC (CO ₂ eq)	91.05	142.11	193.17	190.87	411.29	511.39	327.71
PFC (CO ₂ eq)	NA,NE, NO	NA,NE, NO	NA,NE, NO	140.64	240.45	340.27	440.08
SF ₆ (CO ₂ eq)	0.78	1.05	1.32	310.12	306.02	306.48	306.48
Others (NF ₃) (CO ₂ eq)	NA,NO	NA,NO	NA,NO	45.90	45.90	45.90	45.90
Total Including LULUCF (CO ₂ eq)	-62,027.77	-73,511.34	-78,383.00	-848.99	-35,440.93	-36,218.76	-27,315.28
Total Excluding LULUCF (CO₂ eq)	161,892.81	150,600.23	165,442.20	180,096.47	186,636.11	196,820.20	212,376.99

Summary of Emission Trend by Gas in BUR3 (Gg CO₂ eq.): 2004 – 2010

Greenhouse Gas Source and Sink by Gas (BUR3)	2004	2005	2006	2007	2008	2009	2010
CO ₂ Emissions Including CO ₂ From LULUCF	-52,279.74	-9,531.30	-42,434.83	-9,332.77	-17,495.45	-37,086.00	-20,162.52
CO ₂ Emissions Excluding CO ₂ From LULUCF	176,324.12	188,417.32	187,839.36	203,276.14	210,979.94	201,311.08	214,533.50
CH ₄ Emissions Including CH ₄ From LULUCF	1,821.57	1,955.93	1,995.92	2,051.51	2,163.54	2,135.38	2,193.24
CH ₄ Emissions Excluding CH ₄ From LULUCF	1,821.33	1,955.47	1,995.67	2,051.26	2,163.52	2,135.08	2,192.77
N ₂ O Emissions Including N ₂ O From LULUCF	21.45	23.40	21.76	24.53	25.62	21.24	22.79
N ₂ O Emissions Excluding N ₂ O From LULUCF	21.44	23.39	21.75	24.52	25.62	21.23	22.78
HFC (CO ₂ eq)	449.76	518.83	504.49	563.03	642.19	678.73	723.02
PFC (CO ₂ eq)	539.90	639.71	739.53	839.34	939.16	1,038.97	1,138.79
SF ₆ (CO ₂ eq)	306.93	319.02	313.27	311.48	311.47	313.85	315.42
Others (NF ₃) (CO ₂ eq)	45.90	45.90	45.90	45.90	45.90	45.90	45.90
Total Including LULUCF (CO ₂ eq)	993.57	47,864.20	15,550.31	51,024.97	46,166.40	24,705.93	43,683.07
Total Excluding LULUCF (CO ₂ eq)	229,589.07	245,797.05	245,815.98	263,625.20	274,641.40	263,093.11	278,363.14

Summary of Emission Trend by Gas in BUR3 (Gg CO₂ eq.): 2011 – 2016

Greenhouse Gas Source and Sink by Gas (BUR3)	2011	2012	2013	2014	2015	2016
CO ₂ Emissions Including CO ₂ From LULUCF	-25,146.39	-24,475.69	-20,832.61	-18,952.16	-48.77	4,430.47
CO ₂ Emissions Excluding CO ₂ From LULUCF	213,879.39	232,288.22	238,295.94	244,895.70	248,139.23	245,823.29
CH ₄ Emissions Including CH ₄ From LULUCF	2,233.24	2,170.82	2,228.02	2,240.95	2,254.08	2,288.44
CH ₄ Emissions Excluding CH ₄ From LULUCF	2,233.24	2,170.73	2,227.75	2,240.44	2,254.03	2,287.28
N ₂ O Emissions Including N ₂ O From LULUCF	22.73	26.24	25.37	26.92	25.59	25.89
N ₂ O Emissions Excluding N ₂ O From LULUCF	22.73	26.24	25.36	26.90	25.58	25.82
HFC (CO ₂ eq)	688.57	726.51	743.32	764.47	760.40	757.00
PFC (CO ₂ eq)	1,445.24	2,576.01	2,668.57	3,023.58	4,694.46	4,976.28
SF ₆ (CO ₂ eq)	317.42	309.54	324.41	316.45	311.02	348.17
Others (NF ₃) (CO ₂ eq)	45.90	45.29	47.03	45.36	45.36	50.85
Total Including LULUCF (CO ₂ eq)	39,956.61	41,273.03	46,211.77	49,242.33	69,738.67	75,488.61
Total Excluding LULUCF (CO ₂ eq)	278,982.38	298,034.06	305,331.08	313,072.95	317,925.07	316,833.35

Note: As per Technical Annex in BUR3 with the totals corrected.

Summary of Emission Trend by Gas in BUR4 (Gg CO₂ eq.): 1990 – 1997

Greenhouse Gas Source and Sink by Gas (BUR4)	1990	1991	1992	1993	1994	1995	1996	1997
CO ₂ Emissions Including CO ₂ From LULUCF	-30,958.43	-113,569.45	-84,599.72	-123,549.10	-100,704.50	-110,349.73	-103,197.75	-100,517.38
CO ₂ Emissions Excluding CO ₂ From LULUCF	64,954.65	74,808.71	80,587.66	80,738.99	87,922.59	90,583.07	106,450.29	124,161.78
CH ₄ Emissions Including CH ₄ From LULUCF	831.02	880.98	913.03	1,060.42	1,089.30	1,186.65	1,296.32	1,412.72
CH ₄ Emissions Excluding CH ₄ From LULUCF	831.02	880.98	913.03	1,060.42	1,089.30	1,186.65	1,296.32	1,412.72
N ₂ O Emissions Including N ₂ O From LULUCF	11.33	11.55	11.66	12.89	14.43	12.92	12.89	16.92
N ₂ O Emissions Excluding N ₂ O From LULUCF	11.33	11.55	11.66	12.89	14.43	12.92	12.89	16.92
HFC (CO ₂ eq)	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	91.05
PFC (CO ₂ eq)	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
SF ₆ (CO ₂ eq)	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.78
Others (NF ₃) (CO ₂ eq)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
Total Including LULUCF (CO ₂ eq)	-6,807.36	-88,102.95	-58,299.11	-93,196.39	-69,173.17	-76,832.05	-66,946.74	-60,065.83
Total Excluding LULUCF (CO₂ eq)	89,105.72	100,275.22	106,888.27	111,091.69	119,453.92	124,100.75	142,701.30	164,613.33

Summary of Emission Trend by Gas in BUR4 (Gg CO₂ eq.): 1998 – 2004

Greenhouse Gas Source and Sink by Gas (BUR4)	1998	1999	2000	2001	2002	2003	2004
CO ₂ Emissions Including CO ₂ From LULUCF	-105,012.95	-113,639.94	-31,629.02	-66,894.19	-86,702.64	-74,666.82	-45,148.97
CO ₂ Emissions Excluding CO ₂ From LULUCF	112,969.65	125,439.07	137,768.22	143,484.39	151,911.16	165,241.40	179,020.46
CH ₄ Emissions Including CH ₄ From LULUCF	1,393.44	1,513.40	1,600.45	1,656.04	1,656.34	1,739.41	1,852.45
CH ₄ Emissions Excluding CH ₄ From LULUCF	1,393.44	1,513.40	1,600.45	1,656.04	1,656.34	1,739.41	1,852.45
N ₂ O Emissions Including N ₂ O From LULUCF	17.95	17.72	18.33	15.59	18.67	18.84	21.50
N ₂ O Emissions Excluding N ₂ O From LULUCF	17.95	17.72	18.33	15.59	18.67	18.84	21.50
HFC (CO ₂ eq)	142.11	193.17	190.87	411.29	511.39	327.71	449.76
PFC (CO ₂ eq)	NA,NE,NO	NA,NE,NO	140.64	240.45	340.27	440.08	539.90
SF ₆ (CO ₂ eq)	1.05	1.32	310.12	306.02	306.48	306.48	306.93
Others (NF ₃) (CO ₂ eq)	NA,NO	NA,NO	45.90	45.90	45.90	45.90	45.90
Total Including LULUCF (CO ₂ eq)	-64,685.71	-70,330.82	14,530.85	-19,843.36	-38,527.38	-24,447.30	8,911.48
Total Excluding LULUCF (CO ₂ eq)	153,296.90	168,748.19	183,928.08	190,535.21	200,086.41	215,460.92	233,080.91

$\frac{3}{2}$

Summary of Emission Trend by Gas in BUR4 (Gg CO₂ eq.): 2005 – 2011

Greenhouse Gas Source and Sink by Gas (BUR4)	2005	2006	2007	2008	2009	2010	2011
CO ₂ Emissions Including CO ₂ From LULUCF	-5,573.08	-42,871.53	-915.76	-13,995.70	-35,656.14	-18,572.92	-23,144.22
CO ₂ Emissions Excluding CO ₂ From LULUCF	191,503.69	191,106.45	205,455.34	214,676.60	204,877.67	218,821.77	218,107.95
CH ₄ Emissions Including CH ₄ From LULUCF	2,000.69	2,031.15	2,093.28	2,213.69	2,180.29	2,265.53	2,289.28
CH ₄ Emissions Excluding CH ₄ From LULUCF	2,000.69	2,031.15	2,093.28	2,213.69	2,180.29	2,265.53	2,289.28
N ₂ O Emissions Including N ₂ O From LULUCF	23.49	21.82	24.58	25.68	21.29	22.87	22.81
N ₂ O Emissions Excluding N ₂ O From LULUCF	23.49	21.82	24.58	25.68	21.29	22.87	22.81
HFC (CO ₂ eq)	518.83	504.49	563.03	642.19	678.73	723.02	688.57
PFC (CO ₂ eq)	639.71	739.53	839.34	939.16	1,038.97	1,138.79	1,445.24
SF ₆ (CO ₂ eq)	319.02	313.27	311.48	311.47	313.85	315.42	317.42
Others (NF ₃) (CO ₂ eq)	45.90	45.90	45.90	45.90	45.90	45.90	45.90
Total Including LULUCF (CO ₂ eq)	52,967.03	16,011.86	60,501.21	50,936.53	27,274.36	47,103.20	43,381.13
Total Excluding LULUCF (CO₂ eq)	250,043.80	249,989.85	266,872.31	279,608.83	267,808.17	284,497.89	284,633.31

Summary of Emission Trend by Gas in BUR4 (Gg CO₂ eq.): 2012 – 2019

		•		` •	. ,			
Greenhouse Gas Source and Sink by Gas (BUR4)	2012	2013	2014	2015	2016	2017	2018	2019
CO ₂ Emissions Including CO ₂ From LULUCF	-11,980.80	-7,039.31	169.19	9,045.55	30,227.49	5,115.51	14,433.42	51,155.40
CO ₂ Emissions Excluding CO ₂ From LULUCF	234,489.88	241,767.13	250,121.74	253,077.66	245,602.54	248,485.24	255,697.50	265,869.94
CH ₄ Emissions Including CH ₄ From LULUCF	2,321.32	2,261.95	2,098.92	2,080.00	2,189.37	2,145.27	2,039.23	2,029.20
CH ₄ Emissions Excluding CH ₄ From LULUCF	2,321.32	2,261.95	2,098.92	2,080.00	2,189.37	2,145.27	2,039.23	2,029.20
N ₂ O Emissions Including N ₂ O From LULUCF	26.30	25.44	26.99	25.62	25.87	27.00	26.00	24.41
N ₂ O Emissions Excluding N ₂ O From LULUCF	26.30	25.44	26.99	25.62	25.87	27.00	26.00	24.41
HFC (CO ₂ eq)	717.37	743.32	764.47	760.40	757.00	904.82	936.96	973.53
PFC (CO ₂ eq)	2,576.01	2,668.57	3,023.58	4,694.46	4,976.28	4,976.28	4,976.28	4,976.28
SF ₆ (CO ₂ eq)	309.54	324.41	316.50	311.02	348.17	468.83	476.30	483.76
Others (NF ₃) (CO ₂ eq)	45.29	47.03	45.36	45.36	50.85	50.85	50.85	50.85
Total Including LULUCF (CO₂ eq)	57,538.83	60,873.56	64,835.93	74,492.91	98,804.40	73,193.32	79,602.70	115,643.68
Total Excluding LULUCF (CO₂ eq)	304,009.51	309,680.00	314,788.47	318,525.03	314,179.45	316,563.05	320,866.78	330,358.21

Table A - 6: Comparison of Reference and Sectoral Approaches of CO₂ Estimates between BUR3 and BUR4

Years: 1990 - 2011

Greenh	ouse Gas Emissions (Gg CO2 eq.)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Reference											
	Approach	54,610.31	66,970.96	74,815.73	79,176.52	79,233.05	80,972.83	96,572.57	113,238.63	105,704.92	104,720.36	120,961.88
BUR3	Sectoral Approach	59,070.83	68,598.85	74,400.85	73,475.64	79,634.64	81,582.04	94,978.33	111,500.06	100,535.19	112,385.04	122,474.78
	Percentage											
	Difference	-8.17%	-2.43%	0.55%	7.20%	-0.51%	-0.75%	1.65%	1.54%	4.89%	-7.32%	-1.25%
	Reference	E4 C40 24	00.070.00	74 045 70	70 470 50	70 000 05	00 070 00	00 570 57	440 000 00	105 704 00	404 700 00	100 001 00
BUR4	Approach Sectoral Approach	54,610.31 59,070.82	,	· · ·	-,	79,233.05 79,634.64	80,972.83 81,582.04	96,572.57 94,978.33	113,238.63 111,500.06	105,704.92 100.534.84	104,720.36 112.385.04	120,961.88 122,474.78
BONT	Percentage	39,070.02	00,590.05	74,400.03	73,475.04	79,034.04	01,302.04	34,370.33	111,300.00	100,554.64	112,363.04	122,414.10
	Difference	-8.17%	-2.43%	0.55%	7.20%	-0.51%	-0.75%	1.65%	1.54%	4.89%	-7.32%	-1.25%
	ouse Gas Emissions (Gg CO2 eq.)	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
	Reference											
	Approach	130,316.78	135,523.66	153,715.83	167,165.24	173,730.78	174,321.53	189,011.29	197,879.66	190,630.56	202,752.03	201,307.49
BUR3	Sectoral Approach	128,172.92	135,124.43	146,984.71		172,615.02				184,295.08	198,246.89	197,548.61
	Percentage											
	Difference	1.65%	0.29%	4.38%	4.18%	0.64%	1.67%	1.23%	2.12%	3.32%	2.22%	1.87%
	Reference	400 040 70	405 500 00	450 745 00	107 105 01	470 700 70	474 004 50	400 044 00	407.070.00	400 000 50	000 750 00	004 007 40
DUD 4	Approach	130,316.78	135,523.66		- ,	173,730.78		· ·		· ·	,	,
BUR4	Sectoral Approach	128,171.91	135,125.20	146,985.43	160,177.53	172,350.49	1/1,415.6/	185,370.54	193,680.39	184,296.16	198,363.57	197,549.38
	Percentage											

Years: 2012 - 2019

Greenh	ouse Gas Emissions (Gg CO2 eq.)	2012	2013	2014	2015	2016	2017	2018	2019
	Reference Approach	218,937.80	228,435.83	233,503.39	232,894.57	235,881.97			
BUR3	Sectoral Approach	214,159.46	220,533.56	226,728.76	229,446.95	222,510.48			
	Percentage					·			
	Difference	2.18%	3.46%	2.90%	1.48%	5.67%			
	Reference								
	Approach	218,937.80	228,435.83	233,503.39	232,894.57	235,881.97	230,278.63	235,030.48	239,553.42
BUR4	Sectoral Approach	214,160.83	220,533.56	226,729.83	229,426.85	222,510.17	225,941.32	230,848.78	234,858.05
	Percentage								
	Difference	2.18%	3.46%	2.90%	1.49%	5.67%	1.88%	1.78%	1.96%

134

Table A - 7: Short Summary Table for GHG Inventory Year 2019

Categories	Net CO₂	CH₄ (Gg)	N ₂ O	HFCs	PFCs CO. could	SF ₆	Other halogenated gases with CO ₂ equivalent conversion factors	Other halogenated gases without CO ₂ equivalent conversion factors	NO _x	CO (Gg)	NMVOCs	SO ₂
Total National Emissions and Removals	51,155,40	2,029.20	24.41	973.53	4,976.28	483.76	50.85	NA, NE, NO	3.66	100.20	65.92	3.49
1 ENERGY	239.458.25	739.75	4.61	913.33	4,970.20	403.70	30.63	IVA, IVL, IVO	0.61	1.11	65.55	0.07
1A Fuel Combustion Activities	234,858.00	25.13	4.56						0.61	1.11	0.06	0.07
1B Fugitive emissions from fuels	4.600.25	714.63	0.05						NA,NE,NO	NA,NE,NO	65.49	NA,NE,NO
1C Carbon dioxide Transport and Storage	NO	7 1 4.00	0.00						NO NO	NO	NO	NO
2 INDUSTRIAL PROCESSES AND PRODUCT USE	25.957.35	14.08	0.20	973.53	4.976.28	483.76	50.85	NA. NE. NO	2.67	91.39	0.37	3.42
2A Mineral Industry	10.085.04	NA. NE. NO	NO	0.000	1,010.20	100.10	00.00	10.1,112,110	NA. NO	NA. NO	NA. NO	NA. NO
2B Chemical Industry	5.432.65	13.11	NA. NO	NO	NO	NO	NO	NO	1.91	0.19	NA, NO	NA, NO
2C Metal Industry	10.439.66	0.97	NA. NE. NO	NO	2.617.44	NO	NO	NO	0.76	91.20	0.37	3.42
2D Non-Energy Products from Fuels and Solvent Use	NE, NO	NE, NO	NE, NO		,				NA, NO	NA, NO	NA, NO	NA, NO
2E Electronics Industry	NA, NO	NO	NA, NO	43.75	2,358.84	337.03	50.85	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2F Product Uses as Substitutes for Ozone Depleting Substances	NA, NE, NO	NO	NO	929.77	NA, NE, NO		NA, NE, NO	NA, NE, NO	NA, NO	NA, NO	NA, NO	NA, NO
2G Other Product Manufacture and Use	NO	NO	0.20	NO	NE, NO	146.74	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2H Other (please specify)	NE, NO	NE, NO	NO						NA, NO	NA, NO	NA, NO	NA, NO
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	-214,302.97	162.06	18.32						0.39	7.70	IE, NA	IE, NA
3A Livestock		70.56	0.40						NA, NO	NA, NO	NA, NO	NA
3B Land	-214,714.54	IE, NA, NO	IE, NA, NO						IE, NA, NO	IE, NA, NO	IE, NA, NO	NA
3C Aggregate Sources and Non-CO ₂ Emissions Sources on Land	411.57	91.50	17.91						0.39	7.70	NA, NO	NA, NO
3D Other	NE, NO	NO	NO						NE, NO	NE, NO	NE, NO	NE, NO
4 WASTE	42.77	1,113.31	1.28						NA,NE, NO	NA,NE, NO		NA,NE, NO
4A Solid Waste Disposal		467.25	NA, NO						NA, NO	NA, NO	NA, NO	NA, NO
4B Biological Treatment of Solid Waste		0.01	0.00						NA	NA	NA	NA
4C Incineration and Open Burning of Waste	42.77	0.08	0.01						NE	NE	NE	NE
4D Wastewater Treatment and Discharge		645.98	1.27						NA	NA	NA	NA
4E Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5 OTHER	NO	NO	NE									
5A Indirect N₂O Emissions from the Atmospheric			NE									
Deposition of Nitrogen in NO _x and NH ₃			INL									
5B Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo items												
International Bunkers	9,431.48	0.18	0.26						NA	NA	NA	NA
International Aviation(International Bunkers)	8,141.80	0.06	0.23						NA	NA	NA	NA
International Water-borne Transport (International Bunkers)	1289.68	0.12	0.03						NA	NA	NA	NA
Multilateral Operations	NO	NO	NO						NO	NO	NO	NO

Table A - 8: Summary Table for GHG Inventory Year 2019 Year 2019 (1 of 3)

Categories	Net CO₂	CH₄	N₂O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion factors	Other halogenated gases without CO ₂ equivalent conversion factors	NO _x	co	NMVOCs	SO ₂
		(Gg)			CO₂ equivale	ents (Gg)		(Gg)		(Gg)	
Total National Emissions and Removals	51,155.40	2,029.20	24.41	973.53	4,976.28	483.76	50.85	NA, NE, NO	3.66	100.20	65.92	3.49
1 ENERGY	239,458.25	739.75	4.61						0.61	1.11	65.55	0.07
1A Fuel Combustion Activities	234,858.00	25.13	4.56						0.61	1.11	0.06	0.07
1A1 Energy Industries	131,274.34	2.29	1.36						NE, NO	NE, NO	NE, NO	NE, NO
1A2 Manufacturing Industries and \ Construction	33,482.54	1.37	0.21						IE, NE	IE, NE	IE, NE	IE, NE
1A3 Transport	63,576.39	20.75	2.95						0.61	1.11	0.06	0.07
1A4 Other Sectors	6,036.98	0.70	0.04						NE	NE	NE	NE
1A5 Non-Specified	487.76	0.01	0.02						NE	NE	NE	NE
1B Fugitive emissions from fuels	4,600.25	714.63	0.05						NA,NE,NO	NA,NE,NO	65.49	NA,NE,NO
1B1 Solid Fuels	NA, NO	0.95	NA,, NO						NA, NO	NA, NO	NA, NE, NO	NA, NO
1B2 Oil and Natural Gas	4,600.25	713.68	0.05						NA,NE,NO	NA,NE,NO	65.49	NA,NE,NO
1B3 Other emissions from Energy Production	NO	NO	NO						NO	NO	NO	NO
1C Carbon dioxide Transport and Storage	NO								NO	NO	NO	NO
1C1 Transport of CO ₂	NO								NO	NO	NO	NO
1C2 Injection and Storage	NO								NO	NO	NO	NO
2 INDUSTRIAL PROCESSES AND PRODUCT USE	25,957.3498	14.08	0.20	973.53	4,976.28	483.76	50.85	NA, NE, NO	2.67	91.39	0.37	3.42
2A Mineral Industry	10,085.04	NA, NO	NO						NA, NO	NA, NO	NA, NO	NA, NO
2A1 Cement Production	9,120.65	NA							NA	NA	NA	NA
2A2 Lime Production	128.96	NA							NA	NA	NA	NA
2A3 Glass Production	340.52	NA							NA	NA	NA	NA
2A4 Other Process Uses of Carbonates	494.90	NA							NA	NA	NA	NA
2A5 Other (please specify)	NO	NO	NO						NO	NO	NO	NO
2B Chemical Industry	5,432.65	13.11	NA, NO	NO	NO	NO	NO	NO	1.91	0.19	NA, NO	NA, NO
2B1 Ammonia Production	1,224.16	NA	NA						1.91	0.19	NA	NA
2B2 Nitric Acid Production	NO	NO	NO						NO	NO	NO	NO
2B3 Adipic Acid Production	NO	NO	NO						NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid	NO	NO	NO						NO	NO	NO	NO
2B5 Carbide Production	38.02	NA	NA						NA	NA	NA	NA
2B6 Titanium Dioxide Production	NO	NO	NO						NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO						NO	NO	NO	NO
2B8 Petrochemical and Carbon Black	4,170.48	13.11	NA						NA, NO	NA, NO	NA, NO	NA, NO
2B9 Fluorochemical Production				NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Year 2019 (2 of 3)

			1 00	ai 2019 (2 01 3)								
Categories	Net CO ₂	CH₄	N₂O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion factors	Other halogenated gases without CO ₂ equivalent conversion factors	NO _x	со	NMVOCs	SO₂	
		(Gg)	•		CO ₂ equivale	nts (Gg)	•	(Gg)		(Gg	3)		
2C Metal Industry	10,439.66	0.97	NA, NE, NO	NO	2,617.44	NO	NO	NO	0.76	91.20	0.37	3.42	
2C1 Iron and Steel Production	7,543.24	0.41	NA						NE	NA	0.37	NE	
2C2 Ferroalloys Production	1,680.43	0.56	NE						NE	NA	NA	NE	
2C3 Aluminium Production	1,216.00	NA			2,617.44				0.76	91.20	NA	3.42	
2C4 Magnesium Production	NO			NO	NO	NO	NO	NO	NO	NO	NO	NO	
2C5 Lead Production	NE								NE	NE	NE	NE	
2C6 Zinc Production	NO								NO	NO	NO	NO	
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
2D Non-Energy Products from Fuels and Solven Use	t NE, NO	NE, NO	NE, NO						NA, NO	NA, NO	NA, NO	NA, NO	
2D1 Lubricant Use	NE								NA	NA	NA	NA	
2D2 Paraffin Wax Use	NE	NE	NE						NA	NA	NA	NA	
2D3 Solvent Use									NA	NA	NA	NA	
2D4 Other (please specify)	NO	NO	NO						NO	NO	NO	NO	
2E Electronics Industry	NA, NO	NO	NA, NO	43.75	2,358.84	337.03	50.85	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	
2E1 Integrated Circuit or Semiconductor	NA		NA	43.75	1,425.89	337.03	50.85	NA	NA	NA	NA	NA	
2E2 TFT Flat Panel Display				NO	NO	NO	NO	NO	NO	NO	NO	NO	
2E3 Photovoltaics				NA	932.95	NA	NA	NA	NA	NA	NA	NA	
2E4 Heat Transfer Fluid							NO	NO	NO	NO	NO	NO	
2E5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
2F Product Uses as Substitutes for Ozone	NA, NE, NO	NO	NO	929.77	NA, NE, NO		NA,NO	NA, NO	NA. NO	NA, NO	NA, NO	NA, NO	
Depleting Substances	' '	110	110				· ·	,		,	,	·	
2F1 Refrigeration and Air Conditioning	NA, NE			929.77	NA, NE		NA	NA	NA	NA	NA	NA	
2F2 Foam Blowing Agents	NE			NE	NE		NA	NA	NA	NA	NA	NA	
2F3 Fire Protection	NE			NE	NE		NA	NA	NA	NA	NA	NA	
2F4 Aerosols				NE	NE		NA	NA	NA	NA	NA	NA	
2F5 Solvents				NE	NE		NA	NA	NA	NA	NA	NA	
2F6 Other Applications	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	
2G Other Product Manufacture and Use	NO	NO	0.20	NO	NE, NO	146.74	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	
2G1 Electrical Equipment					NE	146.74	NA	NA	NA	NA	NA	NA	
2G2 SF6 and PFCs from Other Product Uses					NE, NO	NE, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	
2G3 N ₂ O from Product Uses			0.20						NA	NA	NA	NA	
2G4 Other (please specify)	NO	NO		NO			NO	NO	NO	NO	NO	NO	
2H Other (please specify)	NE, NO	NE, NO	NO						NA, NO	NA, NO	NA, NO	NA, NO	
2H1 Pulp and Paper Industry	NE	NE							NA	NA	NA	NA	
2H2 Food and Beverages Industry	NE	NE							NA	NA	NA	NA	
2H3 Other (please specify)	NO	NO	NO						NO	NO	NO	NO	

Year 2019 (3 of 3)

			1 66	11 2013 (3 01 3 <i>1</i>							
Categories	Net CO₂	сн₄	N₂O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion factors	Other halogenated gases without CO ₂ equivalent conversion factors	NO _x	со	NMVOCs	SO₂
		(Gg)			CO ₂ equivale	ents (Gg)		(Gg)		(Gg		
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	-214,302.97	162.06	18.32						0.39	7.70	IE, NA, NO	NA, NO
3A Livestock		70.56	0.40						NA, NO	NA, NO	NA, NO	NA
3A1 Enteric Fermentation		48.98							NA, NO	NA, NO	NA, NO	NA
3A2 Manure Management		21.58	0.40						NA, NO	NA, NO	NA, NO	NA
3B Land	-214,714.54	IE, NA, NO	IE, NA, NO						IE, NA, NO	IE, NA, NO	IE, NA, NO	NA
3B1 Forest Land	-237,008.39	IE, NA, NO	IE, NA, NO						IE, NA, NO	IE, NA, NO	NA, NO	NA
3B2 Cropland	-18,561.09	IE, NA, NO	IE, NA, NO						IE, NA, NO	IE, NA, NO	NA, NO	NA
3B3 Grassland	0.00	NA, NO	NA, NO						NA, NO	NA, NO	NA, NO	NA
3B4 Wetlands	IE, NA, NO	IE, NA, NO	IE, NA, NO						IE, NA, NO	IE, NA, NO	NA, NO	NA
3B5 Settlements	40,854.94	NA, NO	NA, NO						NA, NO	NA, NO	NA, NO	NA
3B6 Other Land	NO	NO	NO						NO	NO	NO	NO
3C Aggregate Sources and Non-CO₂ Emissions Sources on Land	411.57	91.50	17.91						0.39	7.70	NA, NO	NA, NO
3C1 Biomass Burning	NO	0.74	0.02						0.39	7.70	NA	NA
3C2 Liming	21.67								NA	NA	NA	NA
3C3 Urea Application	389.89								NA	NA	NA	NA
3C4 Direct N ₂ O Emissions from Managed Soils			12.54						NA	NA	NA	NA
3C5 Indirect N ₂ O Emissions from Managed Soils			3.53						NA	NA	NA	NA
3C6 Indirect N ₂ O Emissions from Manure			1.82						NA	NA	NA	NA
Management												
3C7 Rice Cultivations		90.76	NA						NA	NA	NA	NA
3C8 Other (please specify)	NO	NO	NO						NO	NO	NO	NO
3D Other	NE, NO	NO	NO						NE, NO	NE, NO	NE, NO	NE, NO
3D1 Harvested Wood Products	NE								NE	NE	NE	NE
3D2 Other (please specify)	NO	NO	NO						NO	NO	NO	NO
4 WASTE	42.77	1,113.31	1.28						NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
4A Solid Waste Disposal		467.25	NA, NO						NA, NO	NA, NO	NA, NO	NA, NO
4B Biological Treatment of Solid Waste		0.01	0.00						NA	NA	NA	NA
4C Incineration and Open Burning of Waste	42.77	0.08	0.01						NE	NE	NE	NE
4D Wastewater Treatment and Discharge		645.98	1.27						NA	NA	NA	NA
4E Other (please specify)	NO	NO	NO						NO	NO	NO	NO
5 OTHER	NO	NO	NE	NO	NO	NO	NO	NO	NO	NO	NO	NO
5A Indirect N ₂ 0 Emissions from the Atmospheric			NE									
Deposition of Nitrogen in NO _x and NH ₃			INE									
5B Other (please specify)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Memo items												
International Bunkers	9,431.48	0.18	0.26						NA	NA	NA	NA
International Aviation(International Bunkers)	8,141.80	0.06	0.23						NA	NA	NA	NA
International Water-borne Transport (International Bunkers)	1,289.68	0.12	0.03						NA	NA	NA	NA
Multilateral Operations	NO	NO	NO						NO	NO	NO	NO

Table A - 9: Energy Sectoral Table for GHG Inventory Year 2019

Year 2019 (1 of 4)

	Catagorias	CO ₂	CH₄	N ₂ O	NO _x	СО	NMVOCs	SO ₂
	Categories				(Gg)			
1 Energy		239,458.25	739.75	4.61	0.61	1.11	65.55	0.07
1A	Fuel Combustion Activities	234,858.00	25.13	4.56	0.61	1.11	0.06	0.07
1A1	Energy Industries	131,274.34	2.29	1.36	NE, NO	NE, NO	NE, NO	NE, NO
1A1a	Main Activity Electricity and Heat Production	109,349.31	1.71	1.26	NE, NO	NE, NO	NE, NO	NE, NO
1A1ai	Electricity Generation	106,000.33	1.47	1.23	NE	NE	NE	NE
1A1aii	Combined Heat and Power Generation (CHP)	3,348.97	0.24	0.03	NE	NE	NE	NE
1A1aiii	Heat Plants	NO	NO	NO	NO	NO	NO	NO
1A1b	Petroleum Refining	8,200.82	0.34	0.07	NE	NE	NE	NE
1A1c	Manufacture of Solid Fuels and Other Energy Industries	13,724.22	0.24	0.02	NE, NO	NE, NO	NE, NO	NE, NO
1A1ci	Manufacture of Solid Fuels	NO	NO	NO	NO	NO	NO	NO
1A1cii	Other Energy Industries	13,724.22	0.24	0.02	NE	NE	NE	NE
1A2	Manufacturing Industries and Construction	33,482.54	1.37	0.21	IE, NE	IE, NE	IE, NE	IE, NE
1A2a	Iron and Steel	9,446.93	0.21	0.03	NE	NE	NE	NE
1A2b	Non-Ferrous Metals	311.66	0.01	0.00	NE	NE	NE	NE
1A2c	Chemicals	3,625.72	0.09	0.01	NE	NE	NE	NE
1A2d	Pulp, Paper and Print	982.93	0.03	0.00	NE	NE	NE	NE
1A2e	Food Processing, Beverages and Tobacco	6,323.68	0.12	0.01	NE	NE	NE	NE
1A2f	Non-Metallic Minerals	7,945.64	0.75	0.11	NE	NE	NE	NE
1A2g	Transport Equipment	2,729.51	0.11	0.02	NE	NE	NE	NE
1A2h	Machinery	256.47	0.01	0.00	NE	NE	NE	NE
1A2i	Mining (excluding fuels) and Quarrying	IE	IE	IE	IE	IE	IE	ΙE
1A2j	Wood and wood products	487.35	0.02	0.00	NE	NE	NE	NE
1A2k	Construction	ΙE	ΙΕ	ΙΕ	IE	ΙE	ΙE	ΙE
1A2I	Textile and Leather	852.28	0.02	0.00	NE	NE	NE	NE
1A2m	Non-specified Industry	520.36	0.01	0.00	NE	NE	NE	NE

Year 2019 (2 of 4)

	Categories	CO ₂	CH ₄	N ₂ O	NO _x	CO	NMVOCs	SO ₂
	Categories				(Gg)			
1A3	Transport	63,576.39	20.75	2.95	0.61	1.11	0.06	0.07
1A3a	Civil Aviation	1,276.23	0.01	0.04	0.61	1.11	0.06	0.07
1A3ai	International Aviation (International Bunkers)							
1A3aii	Domestic Aviation	1,276.23	0.01	0.04	0.61	1.11	0.06	0.07
1A3b	Road Transportation	54,225.95	19.07	2.63	IE, NE, NO	IE, NE, NO	IE, NE, NO	IE, NE, NO
1A3bi	Cars	IE	IE	ΙE	IE	IE	IE	ΙE
1A3bi1	Passenger cars with 3-way catalysts	IE	IE	ΙE	IE	IE	IE	ΙE
1A3bi2	Passenger cars without 3-way catalysts	ΙE	IE	ΙE	IE	IE	IE	ΙE
1A3bii	Light-duty trucks	ΙΕ	IE	IE	IE	IE	IE	ΙE
1A3bii1	Light-duty trucks with 3-way catalysts	ΙE	IE	IE	IE	IE	IE	ΙE
1A3bii2	Light-duty trucks without 3-way catalysts	ΙE	IE	ΙE	IE	IE	IE	ΙE
1A3biii	Heavy-duty trucks and buses	IE	IE	ΙE	IE	IE	IE	ΙE
1A3biv	Motorcycles	ΙΕ	IE	ΙE	IE	IE	IE	ΙE
1A3bv	Evaporative emissions from vehicles				NE	NE	NE	NE
1A3bvi	Urea-based catalysts	NO			NO	NO	NO	NO
1A3c	Railways	46.69	0.00	0.02	NE	NE	NE	NE
1A3d	Water-borne Navigation	5,650.38	0.53	0.15	NE	NE	NE	NE
1A3di	International water-borne navigation (International bunkers)							
1A3dii	Domestic Water-borne Navigation	5,650.38	0.53	0.15	NE	NE	NE	NE
1A3e	Other Transportation	2,377.14	1.13	0.11	NE,NO	NE,NO	NE,NO	NE,NO
1A3ei	Pipeline Transport	NE	NE	NE	NE	NE	NE	NE
1A3eii	Off-road	2,377.14	1.13	0.11	NO	NO	NO	NO
1A4	Other Sectors	6,036.98	0.70	0.04	NE	NE	NE	NE
1A4a	Commercial/Institutional	1,700.36	0.20	0.01	NE	NE	NE	NE
1A4b	Residential	1,650.08	0.13	0.00	NE	NE	NE	NE
1A4c	Agriculture/Forestry/Fishing/Fish Farms	2,686.54	0.36	0.02	NE	NE	NE	NE
1A4ci	Stationary	134.33	0.02	0.00	NE	NE	NE	NE
1A4cii	Off-road Vehicles and Other Machinery	15.38	0.00	0.00	NE	NE	NE	NE
1A4ciii	Fishing (mobile combustion)	2,536.83	0.34	0.02	NE	NE	NE	NE

14(

Year 2019 (3 of 4)

	1 eai 20 19 (3 01 4)												
	Categories	CO ₂	CH₄	N₂O	NO _x	CO	NMVOCs	SO ₂					
	Categories				(Gg)								
1A5	Non-Specified	487.76	0.01	0.02	NE	NE	NE	NE					
1A5a	Stationary	NE	NE	NE	NE	NE	NE	NE					
1A5b	Mobile	487.76	0.01	0.02	NE	NE	NE	NE					
1A5bi	Mobile (aviation component)	337.45	0.00	0.01	NE	NE	NE	NE					
1A5bii	Mobile (water-borne component)	90.30	0.01	0.00	NE	NE	NE	NE					
1A5biii	Mobile (Other)	60.01	0.00	0.00	NE	NE	NE	NE					
1A5c	Multilateral Operations												
1B	Fugitive emissions from fuels	4,600.25	714.63	0.05	NE,NA,NO	NE,NA,NO	65.49	NE,NA,NO					
1B1	Solid Fuels	NA, NO	0.95	NA	NA, NO	NA, NO	NA, NE, NO	NA, NO					
1B1a	Coal mining and handling	NA	0.95		NA	NA	NE	NA					
1B1ai	Underground mines	NA, NO	0.02		NA, NO	NA, NO	NA, NE, NO	NA, NO					
1B1ai1	Mining	NA	NA		NA	NA	NE	NA					
1B1ai2	Post-mining seam gas emissions	NA	NA		NA	NA	NE	NA					
1B1ai3	Abandoned underground mines	NA	0.02		NA	NA	NA	NA					
1B1ai4	Flaring of drained methane or conversion of methane to CO ₂	NO	NO	NO	NO	NO	NO	NO					
1B1aii	Surface mines	NA	0.93	NA	NA	NA	NE	NA					
1B1aii1	Mining	NA	0.70		NA	NA	NE	NA					
1B1aii2	Post-mining seam gas emissions	NA	0.23		NA	NA	NE	NA					
1B1b	Uncontrolled combustion and burning coal dumps	NO	NO		NO	NO	NO	NO					
1B1c	Solid fuel transformation	NO	NO		NO	NO	NO	NO					
1B2	Oil and Natural Gas	4,600.25	713.68	0.05	NE,NA,NO	NE,NA,NO	65.487647	NE,NA,NO					
1B2a	Oil	4,335.70	430.04	0.05	NE,NA,NO	NE,NA,NO	37.45	NE,NA,NO					
1B2ai	Venting	3.00	403.83	NA	NE	NE	0.00	NE					
1B2aii	Flaring	4,332.70	26.00	0.05	NE	NE	0.00	NE					
1B2aiii	All Other	0.00	0.21	NA	NA	NA	37.45	NA					
1B2aiii1	Exploration	NE	NE	NE	NE	NE	NE	NE					
	Production and Upgrading	0.00	0.02	NA	NA	NA	0.00	NA					
	Transport	NE	NE	NE	NE	NE	NE	NE					
	Refining	NA	0.19	NA	NA	NA	37.45	NA					
1B2aiii5	Distribution of oil products	NE	NE	NE	NE	NE	NE	NE					
1B2aiii6	Other	NO	NO	NO	NO	NO	NO	NO					
1B2b	Natural Gas	264.54	283.64	0.00	NA, NE, NO	NA, NE, NO	28.04	NA, NE, NO					
1B2bi	Venting	NO	NO	NO	NO	NO	NO	NO					
1B2bii	Flaring	254.46	1.53	0.00	NA	NA	NA	NA					
1B2biii	All Other	10.08	282.11	NA	NA	NA	28.04	NA					
1B2biii1	Exploration	NE	NE	NE	NE	NE	NE	NE					
	Production	2.65	237.90	NA	NA	NA	17.52	NA					
1B2biii3		6.84	21.81	NA	NA	NA	10.02	NA					
	Transmission and Storage	0.04	11.26	NA	NA	NA	0.34	NA					
	Distribution	0.54	11.15	NA	NA	NA	0.16	NA					
1B2biii6		NO	NO	NO	NO	NO	NO	NO					
1B3	Other emissions from Energy Production	NO	NO	NO	NO	NO	NO	NO					
				_		_	_						

Year 2019 (4 of 4)

	Catagorias	CO ₂	CH ₄	N ₂ O	NO _x	СО	NMVOCs	SO ₂
	Categories				(Gg)			
1C	Carbon dioxide Transport and Storage	NO	NO	NO	NO	NO	NO	NO
1C1	Transport of CO ₂	NO			NO	NO	NO	NO
1C1a	Pipelines	NO			NO	NO	NO	NO
1C1b	Ships	NO			NO	NO	NO	NO
1C1c	Other (please specify)	NO			NO	NO	NO	NO
1C2	Injection and Storage	NO			NO	NO	NO	NO
1C2a	Injection	NO			NO	NO	NO	NO
1C2b	Storage	NO			NO	NO	NO	NO
1C3	Other	NO	NO	NO	NO	NO	NO	NO
	Categories			Em	issions (Gg)			
	Categories	CO ₂	CH ₄	N ₂ O	NO _x	СО	NMVOCs	SO ₂
Memo Items								
International E	Bunkers	9,431.48	0.18	0.26	NE	NE	NE	NE
Interna	ational Aviation (International Bunkers)	8,141.80	0.06	0.23	NE	NE	NE	NE
Interna	International water-borne navigation (International bunkers)		0.12	0.03	NE	NE	NE	NE
Multilateral O	ultilateral Operations		NO	NO	NO	NO	NO	NO
Information I	tems							
CO ₂ from Bio	mass Combustion for Energy Production	3,042.66						

Table A - 10: IPPU Sectoral Table for GHG Inventory Year 2019 Year 2019 (1 of 3)

	1 ear 2013 (1 of 3)												
	Category	CO ₂	CH₄ (Gg)	N ₂ O	HFCs	PFCs	SF ₆ CO₂ equivalen	Other halogenated gases with CO ₂ equivalent conversion ts (Gg)	Other halogenated gases without CO ₂ equivalent conversion	NO _x	со	NMVOCs (Gg)	SOx
2 INDUST	RIAL PROCESSES AND PRODUCT USE	25,957.35	14.08	0.20	973.53	4,976.28	483.76	50.85	NA, NE, NO	2.67	91.39	0.37	3.42
2A	Mineral Industry	10,085.04	NA, NO	NO					, ,	NA, NO	NA, NO	NA, NO	NA, NO
2A1	Cement Production	9,120.65	NA							NA	NA	NA	NA
2A2	Lime Production	128.96	NA							NA	NA	NA	NA
2A3	Glass Production	340.52	NA							NA	NA	NA	NA
2A4	Other Process Uses of Carbonates	494.90	NA							NA	NA	NA	NA
2A4a	Ceramics	IE	NA							NA	NA	NA	NA
2A4b	Other Uses of Soda Ash	NE	NA							NO	NO	NO	NO
2A4c	Non Metallurgical Magnesia Production	IE	NA							NO	NO	NO	NO
2A4d	Other (please specify)	IE	NA							NO	NO	NO	NO
2A5	Other (please specify)	NO	NO	NO						NO	NO	NO	NO
2B	Chemical Industry	5,432.65	13.11	NA, NO	NO	NO	NO	NO	NO	1.91	0.19	NA, NO	NA, NO
2B1	Ammonia Production	1,224.16	NA	NA						1.91	0.19	NA	NA
2B2	Nitric Acid Production	NO	NO	NO						NO	NO	NO	NO
2B3	Adipic Acid Production	NO	NO	NO						NO	NO	NO	NO
2B4	Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO						NO	NO	NO	NO
2B5	Carbide Production	38.02	NA	NA						NA	NA	NA	NA
2B6	Titanium Dioxide Production	NO	NO	NO						NO	NO	NO	NO
2B7	Soda Ash Production	NO	NO	NO						NO	NO	NO	NO
2B8	Petrochemical and Carbon Black Production	4,170.48	13.11	NA,NO						NA, NO	NA, NO	NA, NO	NA, NO
2B8a	Methanol	1,363.45	4.68	NA						NA	NA	NA	NA
2B8b	Ethylene	2,725.48	8.21	NA						NA	NA	NA	NA
2B8c	Ethylene Dichloride and Vinyl Chloride Monomer	NO	NO	NO						NO	NO	NO	NO
2B8d	Ethylene Oxide	81.55	0.22	NA						NA	NA	NA	NA
2B8e	Acrylonitrile	NO	NO	NO						NO	NO	NO	NO
2B8f	Carbon Black	NO	NO	NO						NO	NO	NO	NO
2B9	Fluorochemical Production				NO	NO	NO	NO	NO	NO	NO	NO	NO
2B9a	By-product Emissions				NO	NO	NO	NO	NO	NO	NO	NO	NO
2B9b	Fugitive Emissions				NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Year 2019 (2 of 3)

	Category	CO2	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion	Other halogenated gases without CO ₂ equivalent conversion	NO _x	со	NMVOCs	SOx
2C	Metal Industry	10,439.66	(Gg) 0.97	NA, NE, NO	NO	2.617.44	O ₂ equivalen	ts (Gg) NO	NO	0.76	91.20	(Gg)	3.42
2C1	Iron and Steel Production	7,543.24	0.97	NA, NE, NO	NO	2,017.44	NO	NO	NO	NE	91.20 NA	0.37	NE
2C2	Ferroalloys Production	1,680.43	0.56	NE NE						NE	NA NA	NA	NE
2C3	Aluminium Production	1,216.00	NA	IVE		2.617.44				0.76	91.20	NA NA	3.42
2C4	Magnesium Production	NO	14/ (NO	NO	NO	NO	NO	NO	NO NO	NO	NO
2C5	Lead Production	NE			110	140	110	140	140	NE	NE	NE	NE
2C6	Zinc Production	NO								NO	NO	NO	NO
2C7	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2D	Non-Energy Products from Fuels and Solvent Use	NE, NO	NE, NO	NE, NO	110		110	110	140	NA, NO	NA, NO	NA, NO	NA, NO
2D1	Lubricant Use	NE								NA	NA	NA	NA
2D2	Paraffin Wax Use	NE	NE	NE						NA	NA	NA	NA
2D3	Solvent Use									NA	NA	NA	NA
2D4	Other (please specify)	NO	NO	NO						NO	NO	NO	NO
2E	Electronics Industry	NA, NO	NO	NA, NO	43.75	2,358.84	337.03	50.85	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2E1	Integrated Circuit or Semiconductor	NA		NA	43.75	1,425.89	337.03	50.85	NA	NA	NA	NA	NA
2E2	TFT Flat Panel Display				NO	NO	NO	NO	NO	NO	NO	NO	NO
2E3	Photovoltaics				NA	932.95	NA	NA	NA	NA	NA	NA	NA
2E4	Heat Transfer Fluid							NO	NO	NO	NO	NO	NO
2E5	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2F	Product Uses as Substitutes for Ozone Depleting Substances	NA, NE, NO	NO	NO	929.77	NA, NE, NO		NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2F1	Refrigeration and Air Conditioning	NA, NE			929.77	NA, NE		NA	NA	NA	NA	NA	NA
2F1a	Refrigeration and Stationary Air Conditioning	NE			NE	NE		NA	NA	NA	NA	NA	NA
2F1b	Mobile Air Conditioning	NA			929.77	NA		NA	NA	NA	NA	NA	NA
2F2	Foam Blowing Agents	NE			NE	NE		NA	NA	NA	NA	NA	NA
2F3	Fire Protection	NE			NE	NE		NA	NA	NA	NA	NA	NA
2F4	Aerosols				NE	NE		NA	NA	NA	NA	NA	NA
2F5	Solvents				NE	NE		NA	NA	NA	NA	NA	NA
2F6	Other Applications	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO

14,

Year 2019 (3 of 3)

	Category	CO ₂	CH₄	N₂O	HFCs	PFCs	SF ₆	Other halogenated gases with CO ₂ equivalent conversion	Other halogenated gases without CO ₂ equivalent conversion	NO _x	со	NMVOCs	SOx
			(Gg)			C	O ₂ equivalen	ts (Gg)			((Gg)	
2G Other P	roduct Manufacture and Use	NO	NO	0.20	NO	NE, NO	146.74	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2G1	Electrical Equipment					NE	146.74	NA	NA	NA	NA	NA	NA
2G1a	Manufacture of Electrical Equipment					NE	NE	NA	NA	NA	NA	NA	NA
2G1b	Use of Electrical Equipment					NE	146.74	NA	NA	NA	NA	NA	NA
2G1c	Disposal of Electrical Equipment					NE	NE	NA	NA	NA	NA	NA	NA
2G2	SF6 and PFCs from Other Product Uses					NE, NO	NE, NO	NA,NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2G2a	Military Applications					NE	NE	NA	NA	NA	NA	NA	NA
2G2b	Accelerators					NE	NE	NA	NA	NA	NA	NA	NA
2G2c	Other (please specify)					NO	NO	NO	NO	NO	NO	NO	NO
2G3	N2O from Product Uses			0.20						NA	NA	NA	NA
2G3a	Medical Applications			0.20						NA	NA	NA	NA
2G3b	Propellant for Pressure and Aerosol Products			NE						NA	NA	NA	NA
2G3c	Other (please specify)			NO						NO	NO	NO	NO
2G4	Other (please specify)	NO	NO		NO			NO	NO	NO	NO	NO	NO
2H Other		NE, NO	NE, NO	NO						NA, NO	NA, NO	NA, NO	NA, NO
2H1	Pulp and Paper Industry	NE	NE							NA	NA	NA	NA
2H2	Food and Beverages Industry	NE	NE							NA	NA	NA	NA
2H3	Other (please specify)	NO	NO	NO						NO	NO	NO	NO

Table A - 11: AFOLU Sectoral Table for GHG Inventory Year 2019

Year 2019 (1 of 4)

				(0	ig)		
	Categories	Net CO2 emissions / removals			Emissions		
			CH₄	N ₂ O	NOx	СО	NMVOCs
3 Agriculture	, Forestry, and Other Land Use (AFOLU)	-214,302.97	162.06	18.32	0.39	7.70	NA, NE, NO
3A	Livestock		70.56	0.40	NA, NO	NA, NO	NA, NO
3A1	Enteric Fermentation		48.98	NA, NO	NA, NO	NA, NO	NA, NO
3A1a	Cattle		38.98	NA	NA	NA	NA
3A1ai	Dairy Cows		3.07	NA	NA	NA	NA
3A1aii	Other Cattle		35.91	NA	NA	NA	NA
3A1b	Buffalo		5.88	NA	NA	NA	NA
3A1c	Sheep		0.61	NA	NA	NA	NA
3A1d	Goats		1.56	NA	NA	NA	NA
3A1e	Camels		NE	NA	NA	NA	NA
3A1f	Horses		0.06	NA	NA	NA	NA
3A1g	Mules and Asses		NE	NA	NA	NA	NA
3A1h	Swine		1.89	NA	NA	NA	NA
3A1j	Other (please specify)		NO	NO	NO	NO	NO
3A2	Manure Management		21.58	0.40	NA, NO	NA, NO	NA, NO
3A2a	Cattle		2.16	0.08	NA	NA	NA
3A2ai	Dairy cows		1.40	0.01	NA	NA	NA
3A2aii	Other cattle		0.76	0.08	NA	NA	NA
3A2b	Buffalo		0.21	0.00	NA	NA	NA
3A2c	Sheep		0.02	0.01	NA	NA	NA
3A2d	Goats		0.07	0.02	NA	NA	NA
3A2e	Camels		NE	NE	NA	NA	NA
3A2f	Horses		0.01	NA	NA	NA	NA
3A2g	Mules and Asses		NE	NE	NA	NA	NA
3A2h	Swine		13.22	0.01	NA	NA	NA
3A2i	Poultry		5.89	0.28	NA	NA	NA
3A2j	Other (please specify)		NO	NO	NO	NO	NO

Year 2019 (2 of 4)

				(G	ig)		
	Categories	Net CO2 emissions / removals			Emissions		
			CH₄	N ₂ O	NOx	СО	NMVOCs
3B	Land	-214,714.54	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	NA, NO
3B1	Forest land	-237,008.39	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	NA, NO
3B1a	Forest land Remaining Forest land	-237,008.39	0.00	0.00	0.00	0.00	NA
3B1b	Land Converted to Forest land	NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B1bi	Cropland converted to Forest Land	NO	NO	NO	NO	NO	NO
3B1bii	Grassland converted to Forest Land	NO	NO	NO	NO	NO	NO
3B1biii	Wetlands converted to Forest Land	NO	NO	NO	NO	NO	NO
3B1biv	Settlements converted to Forest Land	NO	NO	NO	NO	NO	NO
3B1bv	Other Land converted to Forest Land	NA	NA	NA	NA	NA	NA
3B2	Cropland	-18,561.09	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	NA, NO
3B2a	Cropland Remaining Cropland	-18,662.58	IE	IE	IE	IE	NA
3B2b	Land Converted to Cropland	101.49	NA	NA	NA	NA	NA
3B2bi	Forest Land converted to Cropland	101.49	NA	NA	NA	NA	NA
3B2bii	Grassland converted to Cropland	NO	NO	NO	NO	NO	NO
3B2biii	Wetlands converted to Cropland	NO	NO	NO	NO	NO	NO
3B2biv	Settlements converted to Cropland	NO	NO	NO	NO	NO	NO
3B2bv	Other Land converted to Cropland	NO	NO	NO	NO	NO	NO
3B3	Grassland	0.00	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B3a	Grassland Remaining Grassland	0.00	NA	NA	NA	NA	NA
3B3b	Land Converted to Grassland	NO	NO	NO	NO	NO	NO
3B3bi	Forest Land converted to Grassland	NO	NO	NO	NO	NO	NO
3B3bii	Cropland converted to Grassland	NO	NO	NO	NO	NO	NO
3B3biii	Wetlands converted to Grassland	NO	NO	NO	NO	NO	NO
3B3biv	Settlements converted to Grassland	NO	NO	NO	NO	NO	NO
3B3bv	Other Land converted to Grassland	NO	NO	NO	NO	NO	NO

Year 2019 (3 of 4)

				(G	ig)		
	Categories	Net CO2 emissions / removals			Emissions		
			CH₄	N₂O	NOx	СО	NMVOCs
3B4	Wetlands	IE, NO	IE,NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	NA, NO
3B4a	Wetlands Remaining Wetlands	IE	IE, NA	IE, NA	IE, NA	IE, NA	NA
3B4ai	Peatlands remaining peatlands	IE	IE	IE	ΙE	IE	NA
3B4aii	Flooded land remaining flooded land	IE	NA	NA	NA	NA	NA
3B4b	Land Converted to Wetlands	NO	NO	NO	NO	NO	NO
3B4bi	Land converted for peat extraction	NO	NO	NO	NO	NO	NO
3B4bii	Land converted to flooded land	NO	NO	NO	NO	NO	NO
3B4biii	Land converted to other wetlands	NO	NO	NO	NO	NO	NO
3B5	Settlements	40,854.94	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B5a	Settlements Remaining Settlements	0.00	NA	NA	NA	NA	NA
3B5b	Land Converted to Settlements	40,854.94	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B5bi	Forest Land converted to Settlements	35,564.03	NA	NA	NA	NA	NA
3B5bii	Cropland converted to Settlements	5,290.91	NA	NA	NA	NA	NA
3B5biii	Grassland converted to Settlements	NO	NO	NO	NO	NO	NO
3B5biv	Wetlands converted to Settlements	NO	NO	NO	NO	NO	NO
3B5bv	Other Land converted to Settlements	NO	NO	NO	NO	NO	NO
3B6	Other Land	NO	NO	NO	NO	NO	NO
3B6a	Other land Remaining Other land	NO	NO	NO	NO	NO	NO
3B6b	Land Converted to Other land	NO	NO	NO	NO	NO	NO
3B6bi	Forest Land converted to Other Land	NO	NO	NO	NO	NO	NO
3B6bii	Cropland converted to Other Land	NO	NO	NO	NO	NO	NO
3B6biii	Grassland converted to Other Land	NO	NO	NO	NO	NO	NO
3B6biv	Wetlands converted to Other Land	NO	NO	NO	NO	NO	NO
3B6bv	Settlements converted to Other Land	NO	NO	NO	NO	NO	NO

Year 2019 (4 of 4)

				(0	3 g)		
	Categories	Net CO2 emissions / removals			Emissions		
			CH ₄	N ₂ O	NOx	СО	NMVOCs
3C	Aggregate sources and non-CO ₂ emissions sources on land	411.57	91.50	17.91	0.39	7.70	NA, NO
3C1	Emissions from biomass burning	IE, NO	0.74	0.02	0.39	7.70	NA, NO
3C1a	Biomass burning in forest lands	IE	0.44	0.01	0.10	6.66	NA
3C1b	Biomass burning in croplands	NO	0.31	0.01	0.28	1.04	NA
3C1c	Biomass burning in grasslands	NO	NO	NO	NO	NO	NO
3C1d	Biomass burning in all other land	NO	NO	NO	NO	NO	NO
3C2	Liming	21.67			NA	NA	NA
3C3	Urea application	389.89			NA	NA	NA
3C4	Direct N2O Emissions from managed soils			12.54	NA	NA	NA
3C5	Indirect N2O Emissions from managed soils			3.53	NA	NA	NA
3C6	Indirect N2O Emissions from manure management			1.82	NA	NA	NA
3C7	Rice cultivations		90.76		NA	NA	NA
3C8	Other (please specify)						
3D	Other	NE, NO	NO	NO	NE, NO	NE, NO	NE, NO
3D1	Harvested Wood Products	NE			NE	NE	NE
3D2	Other (please specify)	NO	NO	NO	NO	NO	NO

Table A - 12: Waste Sectoral Table for GHG Inventory Year 2019

	Categories	CO ₂	CH₄	N ₂ O	NOx	СО	NMVOCs	SO ₂
	Categories			(Gg)			
4	WASTE	42.77	1113.31	1.28	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
4A	Solid Waste Disposal		467.25	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
4A1	Managed Waste Disposal Sites		65.41	NA	NA	NA	NA	NA
4A2	Unmanaged Waste Disposal Sites		401.83	NA	NA	NA	NA	NA
4A3	Uncategorised Waste Disposal Sites		NO	NO	NO	NO	NO	NO
4B	Biological Treatment of Solid Waste		0.01	0.00	NA	NA	NA	NA
4C	Incineration and Open Burning of Waste	42.77	0.08	0.01	NE	NE	NE	NE
4C1	Waste Incineration	42.09	0.00	0.01	NE	NE	NE	NE
4C2	Open Burning of Waste	0.68	0.08	0.00	NE	NE	NE	NE
4D	Wastewater Treatment and Discharge		645.98	1.27	NA	NA	NA	NA
4D1	Domestic Wastewater Treatment and Discharge		67.48	1.27	NA	NA	NA	NA
4D2	Industrial Wastewater Treatment and Discharge		578.50	NA	NA	NA	NA	NA
4E	Other (please specify)	NO	NO	NO	NO	NO	NO	NO

Table A - 13a: Energy Background Table for GHG Inventory Year 2019 - 1A1-1A2

			Antivity (T.I)										Emission	s (Gg)									Total ami		(0-1)	Informat	ion Item
			Activity (TJ)				5	Solid		Lie	quid		G	as		Oth	er Fo	ssil		Peat		Bion	nass	Total emis	ssions	(Gg)	(9	Gg)
2006 IPCC Categories	Solid Fuel	Liquid Fuel	Gas	Other Fossil Fuel	Peat	Biomass	CO2	CH ₄	N ₂ O	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O	CO ₂	СН₄	N ₂ O	CO2	CH₄	N ₂ O	CH₄	N ₂ O	CO ₂	CH₄		CO ₂ Amount Captured	
1.A - Fuel Combustion Activities	840,919.64	1,237,686.23	1,174,867.20	NO	NO	40,584.80	80,512.54	1.48	1.26	88,435.42	21.75	3.12	65,910.05	1.55	0.13	NO	NO	NO	NO	NO	NO	0.34	0.05	234,858.00	25.13	4.56	0.00	3,042.6
1.A.1 - Energy Industries	769,540.60	137,277.04	847,343.68	NO	NO	13,472.48	73,653.01	0.77	1.15	10,085.35	0.41	0.08	47,535.98	0.85	0.08	NO	NO	NO	NO	NO	NO	0.26	0.03	131,274.34	2.29	1.36	0.00	1,123.1
1.A.1.a - Main Activity Electricity and Heat Production	769,540.60	25,396.88	602,705.20	NO	NO	13,472.48	73,653.01	0.77	1.15	1,884.53	0.08	0.02	33,811.76	0.60	0.06	NO	NO	NO	NO	NO	NO	0.26	0.03	109,349.31	1.71	1.26	0.00	1,123.1
1.A.1.a.i - Electricity Generation	769,540.60	22,426.24	546,932.48	NO	NO	6,819.92	73,653.01	0.77	1.15	1,664.41	0.07	0.01	30,682.91	0.55	0.05	NO	NO	NO	NO	NO	NO	0.09	0.01	106,000.33	1.47	1.23	0.00	501.5
1.A.1.a.ii - Combined Heat and Power Generation (CHP)	NO	2,970.64	55,772.72	NO	NO	6,652.56	NO	NO	NO	220.12	0.01	0.00	3,128.85	0.06	0.01	NO	NO	NO	NO	NO	NO	0.17	0.02	3,348.97	0.24	0.03	0.00	621.57
1.A.1.a.iii - Heat Plants	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	0.00	0.00	0.00	NO	NO
1.A.1.b - Petroleum Refining	NO	111,880.16	NO	NO	NO	NO	NO	NO	NO	8,200.82	0.34	0.07	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	8,200.82	0.34	0.07	0.00	NO
1.A.1.c - Manufacture of Solid Fuels and Other Energy Industries	NO	NO	244,638.48	NO	NO	NO	NO	NO	NO	NO	NO	NO	13,724.22	0.24	0.02	NO	NO	NO	NO	NO	NO	NO	NO	13,724.22	0.24	0.02	0.00	NO
1.A.1.c.i - Manufacture of Solid Fuels	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO		NO									0.00	0.00	0.00	NO	NO
1.A.1.c.ii - Other Energy Industries	NO	NO	244,638.48	NO	NO	NO	NO	NO	NO	NO	NO	NO	13,724.22	0.24	0.02	NO	NO	NO	NO	NO	NO	NO	NO	13,724.22	0.24	0.02	0.00	NO
1.A.2 - Manufacturing Industries and Construction	71,379.04	115,520.24	322,419.04	NO	NO	NO	6,859.53	0.71	0.11	8,535.30	0.34	0.07	18,087.71	0.32	0.03	NO	NO	NO	NO	NO	NO	NO	NO	33,482.54	1.37	0.21	0.00	NO
1.A.2.a - Iron and Steel	0.00	31,266.71	127,773.21	NO	NO	NO	0.00		0.00				7,168.08											9,446.93		0.03	0.00	NO
1.A.2.b - Non-Ferrous Metals	0.00	0.00	5,555.36	NO	NO	NO	0.00	0.00	0.00	0.00	0.00				0.00									311.66		0.00	0.00	NO
1.A.2.c - Chemicals	0.00	16,509.42	42,637.37	NO	NO	NO	0.00	0.00	0.00	1,233.76	0.05		2,391.96								NO	NO	NO	3,625.72	0.09	0.01	0.00	NO
1.A.2.d - Pulp, Paper and Print	0.00	6,031.55	9,582.99	NO	NO	NO	0.00	0.00		445.33	0.02				0.00									982.93		0.00	0.00	NO
1.A.2.e - Food Processing, Beverages and Tobacco	0.00	4,195.10	107,218.39	NO	NO	NO	0.00		0.00	308.73	0.01										NO			6,323.68		0.01	0.00	NO
1.A.2.f - Non-Metallic Minerals	71,379.04	7,900.91	8,680.25	NO	NO	NO	6,859.53	0.71		599.15	0.02				0.00				NO		NO		_	7,945.64		0.11	0.00	NO
1.A.2.g - Transport Equipment	0.00	33,692.60	4,166.52	NO	NO	NO	0.00	0.00		2,495.77					0.00									2,729.51		0.02	0.00	NO
1.A.2.h - Machinery	0.00	3,373.51	208.33	NO	NO	NO	0.00	0.00	0.00	244.79	0.01		11.69		0.00						NO			256.47		0.00	0.00	NO
1.A.2.i - Mining (excluding fuels) and Quarrying	0.00	0.00	0.00	NO	NO	NO	0.00	0.00	0.00	0.00	0.00		0.00		0.00				NO		NO			0.00			0.00	NO
1.A.2.j - Wood and wood products	0.00	5,535.57	1,249.96	NO	NO	NO	0.00	0.00		417.23	0.02		70.12		0.00				NO					487.35		0.00	0.00	NO
1.A.2.k - Construction	0.00	0.00	0.00	NO	NO	NO	0.00		0.00	0.00	0.00		0.00		0.00						NO			0.00		0.00	0.00	NO
1.A.2.I - Textile and Leather	0.00	3,350.03	10,763.50	NO	NO	NO	0.00		0.00	248.44	0.01		603.83											852.28		0.00	0.00	NO
1.A.2.m - Non-specified Industry	0.00	3,664.85	4,583.17	NO	NO	NO	0.00	0.00	0.00	263.24	0.01	0.00	257.12	0.00	0.00	NO	NO	NO	NO	NO	NO	NO	NO	520.36	0.01	0.00	0.00	NO

151

Table A - 13b: Energy Background Table for GHG Inventory Year 2019 - 1A3-1A5

Year 2019 (1 of 2)

				(- 1)									Em	ission	s (Gg)											
2006 IPCC Categories			Activity	/ (TJ)				Solid		L	iquid			Gas		Oth	er Fo	ssil		Peat		Bior	nass	Total em	nissions	s (Gg)
ŭ	Solid Fuel	Liquid Fuel	Gas	Other Fossil Fuel	Peat	Biomas s	CO ₂	CH₄	N ₂ O	CO ₂	CH ₄	N₂O	CO ₂	CH₄	N ₂ O	CO2	СН₄	N ₂ O	CO2	СН₄	N ₂ O	CH₄	N₂O	CO ₂	CH₄	N ₂ O
I.A.3 - Transport	NO	892,536,25	4.100.32	NO	NO	27,112.32	NO	NO	NO	63,346.36	20.29	2.92	230.03	0.38	0.01	NO	NO	NO	NO	NO	NO	0.08	0.02	63,576.39	20.75	2.95
1.A.3.a - Civil Aviation		17,849.39	NO	NO	NO	NO				1,276,23	0.01	0.04	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	1,276.23	0.01	0.04
1.A.3.a.i - International Aviation (International Bunkers))	,								.,=														.,		-
1.A.3.a.ii - Domestic Aviation	<u>/</u>	17.849.39	NO	NO	NO	NO				1,276,23	0.01	0.04	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	1.276.23	0.01	0.04
1.A.3.b - Road Transportation *		763,501.22		NO	NO	27.112.32				53.995.92	18.62	2.60	230.03	0.38	0.01	NO	NO	NO	NO	NO	NO	0.08	0.02	54,225.95	19.07	2.63
1.A.3.b.i - Cars		IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE. NO
1.A.3.b.i.1 - Passenger cars with 3-way catalysts		IE IE	IE	NO	NO	IE				IE.	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE, NO
1.A.3.b.i.2 - Passenger cars without 3-way catalysts		IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE, NO
1.A.3.b.ii - Light-duty trucks		IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	ΙE	IE	IE, NO		IE. NO
1.A.3.b.ii.1 - Light-duty trucks with 3-way catalysts		IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE, NO
1.A.3.b.ii.2 - Light-duty trucks without 3-way catalyst	c	IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE. NO
1.A.3.b.iii - Heavy-duty trucks and buses	3	IE	IE	NO	NO	IE				IE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO	-	IE, NO
1.A.3.b.iv - Motorcycles		IE	IE	NO	NO	IE				IF.	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	IE	IE	IE, NO		IE. NO
1.A.3.b.v - Evaporative emissions from vehicles		NE	NO	INO	INO	IL				IL	IL.	IL.	IL.	IL	IL.	INO	INO	INO	INC	INO	INO	IL.	IL	IL, NO	IL, INO	IL, IVC
1.A.3.b.vi - Urea-based catalysts		INL	INO																					NO		_
1.A.3.c - Railways	NO	630.13	NO	NO	NO	NO	NO	NO	NO	46.69	0.00	0.02	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	46.69	0.00	0.02
1.A.3.d - Water-borne Navigation	NO	76,253.40	NO	NO	NO	NO	NO	NO	NO	5.650.38	0.00	0.02	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	5.650.38	0.53	0.02
1.A.3.d.i - International water-borne navigation	NO	76,253.40	NO	NO	NO	NO	NO	NO	NO	5,050.38	0.53	0.15	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	5,650.38	0.53	0.15
International bunkers)	NO	70.050.40	NO	NO	NO	NO	NO	NO	NO	5.050.00	0.50	0.45	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	5 050 00	0.50	0.45
1.A.3.d.ii - Domestic Water-borne Navigation	NO	76,253.40	NO	NO	NO	NO	NO			5,650.38	0.53	0.15	NO	NO	NO	NO	_			NO	NO			5,650.38	0.53	0.15
1.A.3.e - Other Transportation	NO	34,302.11	NE, NO	NO	NO	NO	NO	NO	NO	2,377.14	1.13	0.11	NE, NO	, .	, .		NO	NO	NO	NO	NO	NO	NO	2,377.14	1.13	0.11
1.A.3.e.i - Pipeline Transport	NO	NE	NE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NE	NE	NE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1.A.3.e.ii - Off-road	NO	34,302.11	NO	NO	NO	NO	NO	NO	NO	2,377.14	1.13	0.11	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	2,377.14	1.13	0.11
I.A.4 - Other Sectors	NO	85,604.64	1,004.16	NO	NO	NO	NO	NO	NO	5,980.65	0.69	0.04	56.33	0.01	0.00	NO	NO	NO	NO	NO	NO	NO	NO	6,036.98	0.70	0.04
1.A.4.a - Commercial/Institutional	NO	23,137.52	962.32	NO	NO	NO	NO	NO	NO	1,646.37	0.20	0.01	53.99	0.00	0.00	NO	NO	NO	NO	NO	NO	NO	NO	1,700.36	0.20	0.01
1.A.4.b - Residential	NO	26,066.32	41.84	NO	NO	NO	NO	NO	NO	1,647.73	0.13	0.00	2.35	0.00	0.00	NO	NO	NO	NO	NO	NO	NO	NO	1,650.08	0.13	0.00
1.A.4.c - Agriculture/Forestry/Fishing/Fish Farms	NO	36,400.80	NO	NO	NO	NO	NO	NO	NO	2,686.54	0.36	0.02	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	2,686.54	0.36	0.02
1.A.4.c.i - Stationary	NO	1,820.04	NO	NO	NO	NO	NO	NO	NO	134.33	0.02	0.00	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	134.33	0.02	0.00
1.A.4.c.ii - Off-road Vehicles and Other Machinery	NO	198.74	NO	NO	NO	NO	NO	NO	NO	15.38	0.00	0.00	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	15.38	0.00	0.00
1.A.4.c.iii - Fishing (mobile combustion)	NO	34,382.02	NO	NO	NO	NO	NO	NO	NO	2,536.83	0.34	0.02	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	2,536.83	0.34	0.02
I.A.5 - Non-Specified	NO	6,748.07	IE, NO	NO	NO	NO	NO	NO	NO	487.76	0.01	0.02	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	487.76	0.01	0.02
1.A.5.a - Stationary	NO	IE	ΙE	NO	NO	NO	NO	NO	NO	ΙE	IE	IE	IE	IE	IE	NO	NO	NO	NO	NO	NO	NO	NO	0.00	0.00	0.00
1.A.5.b - Mobile	NO	6,748.07	NO	NO	NO	NO	NO	NO	NO	487.76	0.01	0.02	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	487.76	0.01	0.02
1.A.5.b.i - Mobile (aviation component)	NO	4,719.56	NO	NO	NO	NO	NO	NO	NO	337.45	0.00	0.01	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	337.45	0.00	0.01
1.A.5.b.ii - Mobile (water-borne component)	NO	1,218.65	NO	NO	NO	NO	NO	NO	NO	90.30	0.01	0.00	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	90.30	0.01	0.00
1.A.5.b.iii - Mobile (Other)	NO	809.85	NO	NO	NO	NO	NO	NO	NO	60.01	0.00	0.00	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	60.01	0.00	0.00

Year 2019 (2 of 2)

							Me	mo It	ems																
		Activit	y (TJ)			Solid									Oth	er Fo	ssil			ons	Bior	nass	Em		
Solid	Liquid	Gas		Peat	Biomas	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O				CO2	CH ₄	N ₂ O		N ₂ O	CO ₂	CH₄	N ₂ O
NO	130,774.65	NO	NO	NO	NO	NO	NO	NO	9,431.48	0.18	0.26	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	9,431.48	0.18	0.26
NO	113,871.29	NO	NO	NO	NO	NO	NO	NO	8,141.80	0.06	0.23	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	8,141.80	0.06	0.23
NO	16,903.36	NO	NO	NO	NO	NO	NO	NO	1,289.68	0.12	0.03	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	1,289.68	0.12	0.03
NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	NO NO NO NO	NO 130,774.65 NO 113,871.29 NO 16,903.36 NO NO	Solid Liquid Gas NO 130,774.65 NO NO 113,871.29 NO NO NO NO NO NO NO N	File Gas Fost NO 130,774.65 NO NO NO NO NO NO NO N	Solid Liquid Gas Other Peat	Solid Liquid Gas Other Peat Biomas	Activity (TJ) Solid Solid Color Solid Color Solid Color Solid Color Solid Color Colo	Activity (TJ) Emission Solid Fuel	Activity (TJ) Emissions Solid Fuel (Gg)	Activity (TJ) Solid Fuel (Gg) Liquid	Activity (TJ) Emissions Solid Fuel (Gg) Liquid Fuel (Solid Fuel (Gg) NO NO NO NO NO NO NO N	Activity (TJ) Emissions Solid Fuel (Gg) Solid Fuel (Gg)	Activity (TJ) Emissions Solid Fuel (Gg) Close Close	Activity (TJ) Emissions Solid Fuel (Gg) CO2 CH4 N2O CO2 CH4 N2O	Activity (TJ) Emissions Solid Fuel (Gg) CO2 CH4 N2O CO2 CH4 N2O	Activity (TJ) Emissions Emissions Liquid Fuel (Gg) Gas (Gg) Other Fuel Fu	Emissions Solid Fuel (Gg) Cother Foreign Feet Foreign Foreign	Activity (TJ) Emissions Solid Fuel (Gg) Solid Fuel (Gg) Emissions Emissions Chter Fossil Fuels (GG)	Activity (TJ) Emissions Solid Fuel (Gg) Co2 CH4 N2O CO2 CH4 N2O	Activity (TJ) Emissions Solid Fuel (Gg) Liquid Fuel (Gg) Gas (Gg) Solid Fuel (Gg) Emissions Gas (Gg) Emissions Other Fossil Fuels (Gg) Column Column	Activity (TJ) Emissions Solid Fuel (Gg) Solid Fuel (Gg) Emissions Gas (Gg) Other Fossil Fuels (Gg)	Activity (TJ) Emissions Solid Fuel (Gg) CO2 CH4 N2O CO2 CH4 N2O	Activity (TJ) Emissions Solid Fuel (Gg) CO2 CH4 N2O CO2 CH4 N2O CO2 CH4 N2O CO4 CH4 N2O CO2 CH4 N2O CO4 CH4 N2O	Activity (TJ) Emissions Solid Fuel (Gg) Co2 CH4 N20 C	Activity (TJ) Emissions Solid Fuel (Gg) CO2 CH4 N2O C

Table A - 13c: Energy Background Table for GHG Inventory Year 2019 - 1B

2006 IPCC Categories	Activity Data			En	nissions(Gg)		Information Item: Amount Captured (Gg)
	Description	Unit	Value	CO ₂	CH₄	N ₂ O	CO ₂
1.B - Fugitive emissions from fuels				4,600.25	714.63	0.05	NO
1.B.1 - Solid Fuels				NA,NO	0.95	NA,NO	NO
1.B.1.a - Coal mining and handling				NA	0.95	NA	NO
1.B.1.a.i - Underground mines	coal produced	ktonnes	2.00	NA	0.02	NA	NO
1.B.1.a.i.1 - Mining	coal produced	ktonnes	0.00	NA	NA	NA	NO
1.B.1.a.i.2 - Post-mining seam gas emissions	coal produced	ktonnes	0.00	NA	NA	NA	NO
1.B.1.a.i.3 - Abandoned underground mines	number of mines	number	2.00	NA	0.02	NA	NO
1.B.1.a.i.4 - Flaring of drained methane or conversion of methane to CO ₂	gas flared	10^6 Sm3	NO	NO	NO	NO	NO
1.B.1.a.ii - Surface mines				NA.NO	0.93	NA, NO	NO
1.B.1.a.ii.1 - Mining	coal produced	ktonnes	3,459.12	NA	0.70	ŇA	NO
1.B.1.a.ii.2 - Post-mining seam gas emissions	coal produced	ktonnes	3,459.12	NA	0.23	NA	NO
1.B.1.b - Uncontrolled combustion and burning coal dumps	solid fuel combusted	ktonnes	NO	NO	NO	NO	NO
1.B.1.c - Solid fuel transformation		ktonnes	NO	NO	NO	NO	NO
1.B.2 - Oil and Natural Gas				4,600.25	713.68	0.05	NO
1.B.2.a - Oil				4,335.70	430.04	0.05	NO
1.B.2.a.i - Venting	total gas vented from oil production	10^6 Sm3	611.87	3.00	403.83	NA	NO
1.B.2.a.ii - Flaring	gas flared from oil production	10^3 m3	2,166.35	4,332.70	26.00	0.05	NO
1.B.2.a.iii - All Other	·			0.00	0.21	NA	NO
1.B.2.a.iii.1 - Exploration	wells drilled	number	NE	NE	NE	NE	NO
1.B.2.a.iii.2 - Production and Upgrading	oil produced	10^3 m3	34,141.62	0.00	0.02	NA	NO
1.B.2.a.iii.3 - Transport	crude oil transported	10^3 m3	NE	NE	NE	NE	NO
1.B.2.a.iii.4 - Refining	refinery crude oil throughput	10^3 m3	28,804.07	0.00	0.19	NA	NO
1.B.2.a.iii.5 - Distribution of oil products	amount distributed	10^3 m3	NE	NE	NE	NE	NO
1.B.2.a.iii.6 - Other			0.00	0.00	0.00	NA	NO
1.B.2.b - Natural Gas				264.54	283.64	0.00	NO
1.B.2.b.i - Venting	total gas vented from natural gas production	10^6 Sm3	0.00	0.00	0.00	NA	NO
1.B.2.b.ii - Flaring	gas flared from natural gas production	10^6 Sm3	127.23	254.46	1.53	0.00	NO
1.B.2.b.iii - All Other				10.08	282.11	NA	NO
1.B.2.b.iii.1 - Exploration	wells drilled	number		NE	NE	NE	NO
1.B.2.b.iii.2 - Production	gas produced	10^6 Sm3	86,760.39	2.65	237.90	NA	NO
1.B.2.b.iii.3 - Processing	amount of gas processed at facilities	10^6 Sm3	40,244.12	6.84	21.81	NA	NO
1.B.2.b.iii.4 - Transmission and Storage	amount transported and stored	10^6 Sm3	43,399.15	0.04	11.26	NA	NO
1.B.2.b.iii.5 - Distribution	amount of gas distributed	10^6 m3	8,988.82	0.54	11.15	NA	NO
1.B.2.b.iii.6 - Other			0.00	0.00	0.00	NA	NO
1.B.3 - Other emissions from Energy Production				NO	NO	NO	NO

Table A - 13d(i): Energy Background Table for GHG Inventory Year 2019 - 1C CO₂ Transport, Injection and Storage

		Activit	y (Gg)	Annual mass of fugitive
	Category	Annual mass of CO ₂ transported	Annual mass of CO ₂ injected	CO ₂ emissions to the atmosphere or sea bed (Gg)
1C1 Trans	sport of CO ₂	NO		NO
1C1a	Pipelines	NO		NO
1C1b	Ships	NO		NO
1C1c	Other (please specify)	NO		NO
1C2 Inject	tion and Storage		NO	NO
1C2a	Injection		NO	NO
1C2b	Storage		NO	NO
1C3 Other		NO	NO	NO

Table A - 13d(ii): Energy Background Table for GHG Inventory Year 2019 - 1C CO₂ Transport, Injection and Storage – Overview

Category	CO ₂ (Gg)
Total amount captured for storage (A)	0
Total amount of import for storage (B)	NO
Total amount of export for storage (C)	NO
Total amount of CO2 injected at storage sites (D)	NO
Total amount of leakage during transport (E1) category 1C1	NO
Total amount of leakage during injection (E2) category 1C2a	NO
Total amount of leakage from storage sites (E3) category 1C2b	NO
Total leakage (E4 = E1 + E2 + E3)	NO
Capture + imports (F = A + B)	NO
Injection + leakage + exports (G = D + E4 + C)	NO
Discrepancy (F – G)	NO

Table A - 13e: Energy Background Table for GHG Inventory Year 2019 - Reference Approach

	Fuel Typ	pes	Production	Imports	Exports	International Bunkers	Stock change	Apparent Consumption	Conversion Factor	Apparent Consumption	Carbon emission factor	Carbon content	Carbon content	Excluded Carbon	Net Carbon Emissions	Fraction of Carbon Oxidised	Actual Carbon Emissions	CO ₂ Emissions
			ktoe	ktoe	ktoe	ktoe	ktoe	ktoe	(TJ/ktoe)	(TJ)	(tC/TJ)	(t C)	(Gg C)	(Gg C)	(Gg C)		(Gg C)	(Gg CO₂)
		Crude Oil	29,878.00	10,306.00	12,483.00		2,064.00	25,637.00	41.84	1,072,652.08	20.00	21,453,041.60	21,453.04	0.00	21,453.04	1.00	21,453.04	78,661.15
	Primary Fuels	Orimulsion	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	-	NO	NO
		Natural Gas Liquids	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	-	NO	NO
		Gasoline		8,782.00	348.00	0.00	-203.00	8,637.00	41.84	361,372.08	18.90	6,829,932.31	6,829.93	0.00	6,829.93	1.00	6,829.93	25,043.09
		Jet Kerosene		577.00	665.00	2,721.59	139.00	-2,948.59	41.84	-123,369.01	19.50	-2,405,695.61	-2,405.70	0.00	-2,405.70	1.00	-2,405.70	-8,820.88
		Other Kerosene		0.00	48.00	0.00	-6.00	-42.00	41.84	-1,757.28	19.60	-34,442.69	-34.44	0.00	-34.44	1.00	-34.44	-126.29
		Shale Gas		NO	NO	NO	NO	NO	NO	NO	-	NO	NO	NO	NO	-	NO	NO
Liquid		Gas/Diesel Oil		6,216.00	5,167.00	135.00	-1,417.00	2,331.00	41.84	97,529.04	20.20	1,970,086.61	1,970.09	0.00	1,970.09	1.00	1,970.09	7,223.65
Fossil		Residual Fuel Oil		79.00	403.00	269.00	213.00	-806.00	41.84	-33,723.04	21.10	-711,556.14	-711.56	0.00	-711.56	1.00	-711.56	-2,609.04
	Secondary Fuels	LPG		443.00	591.00		-545.00	397.00	41.84	16,610.48	17.20	285,700.26	285.70	1,516.30	-1,230.60	1.00	-1,230.60	-4,512.19
	Secondary Fuels	Ethane		0.00	0.00		0.00	0.00	41.84	0.00	16.80	0.00	0.00	1,520.96	-1,520.96	1.00	-1,520.96	-5,576.86
		Naphtha		934.34	2,232.30		-62.09	-1,235.87	41.84	-51,708.80	20.00	-1,034,176.02	-1,034.18	0.00	-1,034.18	1.00	-1,034.18	-3,791.98
		Bitumen		244.09	1,062.67		0.00	-818.58	41.84	-34,249.51	22.00	-753,489.28	-753.49	510.88	-1,264.36	1.00	-1,264.36	-4,636.00
		Lubricants		70.75	341.47	NO	0.00	-270.71	41.84	-11,326.63	20.00	-226,532.64	-226.53	125.24	-351.77	1.00	-351.77	-1,289.82
		Petroleum Coke		35.39	175.94		0.00	-140.55	41.84	-5,880.57	26.60	-156,423.17	-156.42	0.00	-156.42	1.00	-156.42	-573.55
		Refinery Feedstocks		0.00	0.00		0.00	0.00	41.84	0.00	20.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
		Other Oils		279.16	744.32		0.00	-465.16	41.84	-19,462.25	20.00	-389,245.05	-389.25	0.00	-389.25	1.00	-389.25	-1,427.23
Liquid Foss	il Totals																	
		Anthracite	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
		Coking Coal	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Primary Fuels	Other Bit. Coal*	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
Solid	•	Sub-bit. Coal	2,181.00	19,624.00	3.00	0.00	658.00	21,144.00	41.84	884,664.96	26.20	23,178,221.95	23,178.22		23,178.22	1.00	23,178.22	84,986.81
Fossil		Lignite*	IE	IE	IE		IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
		Oil Shale and Tar Sands	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
		BKB & Patent Fuel		NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Secondary Fuels	Coke Oven/Gas Coke		NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
		Coal Tar	N0	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Solid Fossil	Totals																	
Gaseous Fos	ssil	Natural Gas (Dry)	63,631.00	7,988.00	30,158.00		NO	41,461.00	41.84	1,734,728.24	15.30	26,541,342.07	26,541.34	5,540.64	21,000.70	1.00	21,000.70	77,002.56
Other Fossil	Fuels		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Peat			NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Total			95,690.00	55,578.73	54,422.69	3,125.59	840.91	92,879.54		3,886,079.79		67,959,690.00	74,546.76	9,214.01	65,332.75		65,332.75	239,553.42
* IE in Other	Bit. Coal and L	ignite are included in th	he Sub-bit Co	al as the NE	B primary fu	el data did not	provide a b	reakdown of co	al into differen	t coal types.								

Table A - 14a: IPPU Background Table for GHG Inventory Year 2019 - 2A Mineral Industry, 2B (2B1-2B8, 2B10) Chemical Industry - CO₂, CH₄ and N₂O

	Activity data						Emissions			
	Production/Consumption	on quantity			CO ₂ (Gg)		CH₄	(Gg)	N ₂ C) (Gg)
	Description	Quantity	Unit	Emissions	Information item Captured	(memo) Other reduction	Emissions	Information item reduction	Emission s	Information item reduction
2A Mineral Industry				10,085.04	NO	NO	NA, NO	NA, NO	NO	NO
2A1 Cement production	Production of clinker	17,710,000.00	Tonnes	9,120.65	NO	NO	NA	NA		
2A2 Lime production	Production of Quicklime	171,946.75	Tonnes	128.96	NO	NO	NA	NA		
2A3 Glass Production	Production of Glass	2,270,150.00	Tonnes	340.52	NO	NO	NA	NA		
2A4 Other Process Uses of Carbonates				494.90	NO	NO	NA, NO	NO		
2A4a Ceramics *	Use of limestone and dolomite in ceramic production	ΙE	Tonnes	IE	NO	NO	NA	NO		
2A4b Other Uses of Soda Ash *	Use of limestone and dolomite in Soda Ash production	NE	Tonnes	NE	NO	NO	NA	NO		
2A4c Non Metallurgical Magnesia Production *	Use of limestone and dolomite in Non Metallurgical Magnesia Production production	ΙE	Tonnes	ΙE	NO	NO	NA	NO		
2A4d Other	Agregates of other proceses use of Limestone and Dolomite other than in 2A1, 2A2, 2A3	245,290 (limestone) 810,876 (dolomite)	Tonnes	494.90	NO	NO	NO	NO		
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B Chemical Industry				5,432.65	NO	NO	13.11	NA, NO	NA, NO	NA, NO
2B1 Ammonia Production	Production of ammonia	C	Tonnes	1,224.16	NO	NO	NA	NA	NA	NA
2B2 Nitric Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Produc	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	Production of carbide	34,560.00	Tonnes	38.02	NO	NO	NA	NA	NA	NA
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production				4,170.48	NO	NO	13.11	NO	NA, NO	NO
2B8a Methanol	Conventional Steam Reforming, without primary reformer	С	Tonnes	1,363.45	NO	NO	4.68	NO	ŇA	NA
2B8b Ethylene	Ethane and Naphtha	С	Tonnes	2,725.48	NO	NO	8.21	NO	NA	NA
2B8c Ethylene Dichloride and Vinyl Chloride Monome	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8d Ethylene Oxide	Oxygen Process	С	Tonnes	81.55	NO	NO	0.22	NO	NA	NA
2B8e Acrylonitrile	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8f Carbon Black	NO	NO	Tonnes	NO	NO	NO	NO	NO	NO	NO
2B10 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
* IE in 2A4a and 2A4c denotes emission in these subcar	tegories were accounted in 2A4d									

Table A – 14b: IPPU Background Table for GHG Inventory Year 2019 - 2B (2B9 - 2B10) Chemical Industry, HFCs, PFCs, SF₆ and other halogenated gases

	Categories	HFC-23	HFC-32	HFC-41	HFC-125	HFC-134	HFC-134a	HFC-143	HFC-143a	HFC-152	HFC-152a	HFC-161	HFC-227ea	HFC-236cb	HFC-236ea	HFC-236fa	HFC-245ca	HFC-245fa	HFC-365mfc	HFC-43-10mee	Other HFCs (please specify)	otal	CF4	C2F6	C3F8	C ₄ F ₁₀	c-C₄F ₈	C ₅ F ₁₂	C ₆ F ₁₄	Other HFCs (please specify)	Total PFCs	SFe	Other halogenated gases
_	quivalent conversion factors ce of the factor: IPCC AR4,	14,800	675	*116	3,500	*1,120	1,430	*328	4,470	*16	124	*4	3,220	*1,210	*1,330	9,810	*716	1,030	794	1,640			7,390	12,200	8,830	8,860	10,300	9,160	9,300			22,800	
										Em	issio	ns in	origi	inal m	nass u	nit (to	onne))															
2B9	Fluorochemical Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
2B9a	By-product Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	(information) Reduced amount	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B9b	Fugitive Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
	(information) Reduced amount	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
2B10	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
		-								Emis	sions	in C	02 e	quiva	lent u	nit (G	g-CO)2)															
2B9	Fluorochemical Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B9a	By-product Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B9b	Fugitive Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Table A – 14c: IPPU Background Table for GHG Inventory Year 2019 - 2C Metal Industry CO₂, CH₄ and N₂O

	Ac	ctivity Data					Emissions			
	Production/C	consumption q	uantity		CO ₂ (Gg)		CH,	4 (Gg)	N ₂ O	(Gg)
Categories	Description	Quantity	Unit	Emissions	(information) Captured and Stored	(information) Other Reduction	Emissions	(information) Reduction	Emissions	(information) Reduction
2C Metal Industry				10,439.66	NA, NE, NO	NA, NE, NO	0.97	NA, NE, NO	NA, NE, NO	NA, NE, NO
2C1 Iron and Steel Production	Production of iron & steel	12,934,651.38	tonne	7,543.24	0.41	NO	0.41	NO	NA	NA
2C2 Ferroalloys Production	Production of Ferroalloys	829,486.68	tonne	1,680.43	NO	NO	0.56	NO	NE	NE
2C3 Aluminium Production	Production of aluminum	760,000.00	tonne	1,216.00	NA	NA	NA	NA		
2C4 Magnesium Production	NO	NO	tonne	NO	NO	NO				
2C5 Lead Production	NE	NE	tonne	NE	NE	NE				
2C6 Zinc Production	NO	NO	tonne	NO	NO	NO				
2C7 Other (please specify)	NO	NO	tonne	NO	NO	NO	NO	NO	NO	NO

Table A – 14d: IPPU Background Table for GHG Inventory Year 2019 - 2C (2C3, 2C4, 2C7) Metal Industry HFCs, PFCs, SF₆ and other halogenated gases

Categories	HFC-143a	HFCs (please 'y)	Fotal HFCs	CF4	0 C₂F 6	C ₃ F ₈	C4F10	0 c-C 4F8	C ₅ F ₁₂	C6F14	PFCs (please y)	PFCs	O SF ₆	halogenated (please y)
CO ₂ equivalent conversion factors [Source of the factor: IPCC AR4]	4,470	Other H specify)	otal	7,390	12,200	8,830	8,860	10,300	9,160	9,300	Other PF specify)	Total	22,800	Other hagases
		O %	<u> </u>	nissions in	· ·						Os	-	(1	ပြောက်
2C3 Aluminium Production				0.30	0.03	NA	NA	NA	NA	NA	NA			
(information) Reduced amount				NA	NA	NA	NA	NA	NA	NA	NA			
2C4 Magnesium Production	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
(information) Reduced amount	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
2C7 Other Metals (please specify)	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
(information) Reduced amount	NO	NO		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
			Emis	sions in CC	₂ equival	ent unit (Gg CO _{2 e}	q.)						
2C3 Aluminium Production				2,246.56	370.88	NA	NA	NA	NA	NA	NA	2,617.44		
2C4 Magnesium Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Table A – 14e: IPPU Background Table for GHG Inventory Year 2019 - 2D Non-Energy Products from Fuels and Solvent Use CO₂, CH₄ and N₂O

	Ac	tivity Data			Emissions	
Categories	Production/C	onsumption	quantity	CO ₂	CH ₄	N ₂ O
	Description	Quantity	Unit	(Gg)	(Gg)	(Gg)
2D Non-Energy Products from Fuels and Solvent Use				NE, NO	NE, NO	NE, NO
2D1 Lubricant Use	Lubricant consumption	NE	tonne	NE		
2D2 Paraffin Wax Use	Wax consumption	NE	tonne	NE	NE	NE
2D3 Solvent Use						
2D4 Other				NO	NO	NO
Product (please specify)	NO	NO	NO	NO	NO	NO
Product (please specify)	NO	NO	NO	NO	NO	NO
Product (please specify)	NO	NO	NO	NO	NO	NO

Table A – 14f: IPPU Background Table for GHG Inventory Year 2019 - 2E Electronics Industry HFCs, PFCs, SF₆ NF₃ and other halogenated gases

Categories	CO ₂	N ₂ O	HFC-23	HFC-32	-Cs (please	cs	CF₄	C ₂ F ₆	C ₃ F ₈	c-C4F8	.Cs (please	PFCs	SF ₆	NF3	logenated lease
CO ₂ equivalent conversion factors [Source of the factor: IPCC AR4]	-	298	14,800	675	Other HFCs specify)	Total HFCs	7,390	12,200	8,830	10,300	Other PF specify)	Total PF	22,800	17,200	Other halogena gases (please specify)
				Emissio	ns in orig	inal mas	s unit (tonn	e)							
2E Electronics Industry	NA	NA	0.00	NA, NO	NA, NO		0.18	0.08	0.00	NA, NO	NA, NO		0.01	0.00	NA, NO
2E1 Integrated Circuit or Semiconductor	NA	NA	0.00	NA	NA		0.07	0.07	0.00	NA	NA		0.01	0.00	NA
2E2 TFT Flat Panel Display			NO	NO	NO		NO	NO	NO	NO	NO		NO	NO	NO
2E3 Photovoltaics			NA	NA	NA		0.12	0.00	NA	NA	NA		NA	NA	NA
2E4 Heat Transfer Fluid															NO
2E5 Other (please specify)		NO	NO	NO	NO		NO	NO	NO	NO	NO		NO	NO	NO
Emissions in CO2 equivalent unit (Gg CO2 eq.)															
2E Electronics Industry			43.75	NA, NO	NA, NO	43.75	1,366.72	959.48	32.63	NA, NO	NA, NO	2,358.83	337.03	50.85	NA, NO
2E1 Integrated Circuit or Semiconductor			43.75	NA	NA	43.75	491.57	901.69	32.63	NA	NA	1,425.89	337.03	50.85	NA
2E2 TFT Flat Panel Display			NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2E3 Photovoltaics			NA	NA	NA	NA	875.15	57.79	NA	NA	NA	932.95	NA	NA	NA
2E4 Heat Transfer Fluid															NO
2E5 Other (please specify)			NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Table A – 14g: IPPU Background Table for GHG Inventory Year 2019 - 2F Product Uses as Substitutes for Ozone Depleting Substances HFCs, PFCs and other halogenated gases

Categories	CO ₂	HFC-23	HFC-32	HFC-125	HFC-134a	HFC-143a	HFC-152a	HFC-227ea	HFC-236fa	HFC-245fa	HFC-365mfc	HFC-43- 10mee	Other HFCs (please specify)	Total HFCs	CF₄	C ₂ F ₆	C ₃ F ₈	C4F10	Other PFCs (please specify)	Total PFCs	Other halogenated gases (please specify)
CO ₂ equivalent conversion factors [Source of the factor: IPCC AR4]	1	14,800	675	3,500	1,430	4,470	124	3,220	9,810	1,030	794	1,640			7,390	12,200	8,830	8,860			
Emissions in original mass unit (tonne)																					
2F Product Uses as Substitutes for Ozone Depleting Substances	NA, NE	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.65	NA, NE, NO	NA, NE, NO		NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO		NA, NO						
2F1 Refrigeration and Air Conditioning	NA, NE	NA, NE	NA, NE	NA, NE	0.65	NA, NE	NA, NE		NA, NE	NA, NE	NA, NE	NA, NE	NA, NE		NA						
2F1a Refrigeration and Stationary Air Conditioning	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE		NA
2F1b Mobile Air Conditioning	NA	NA	NA	NA	0.65	NA	NA		NA	NA	NA	NA	NA		NA						
2F2 Foam Blowing Agents	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE		NA
2F3 Fire Protection	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE		NA
2F4 Aerosols		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE		NA
2F5 Solvents		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE		NA
2F6 Other Applications		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO		NO
Emissions in CO₂ equivalent unit (Gg CO₂ eq.)																					
2F Product Uses as Substitutes for Ozone Depleting Substances		NA, NE, NO	NA, NE, NO	NA, NE, NO	929.77	NA, NE, NO	NA, NE, NO	929.77	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO						
2F1 Refrigeration and Air Conditioning		NA, NE	NA, NE	NA, NE	929.77	NA, NE	NA, NE	929.77	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE						
2F1a Refrigeration and Stationary Air Conditioning		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2F1b Mobile Air Conditioning		NA	NA	NA	929.77	NA	NA	929.77	NA	NA	NA	NA	NA	NA	NA						
2F2 Foam Blowing Agents		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2F3 Fire Protection		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2F4 Aerosols		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2F5 Solvents		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2F6 Other Applications		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

162

Table A – 14h: IPPU Background Table or GHG Inventory Year 2019 - 2G (2G1, 2G2, 2G4) Other Product Manufacture and Use – PFCs, SF₆ and other halogenated gases F

Categories	CF4	C ₂ F ₆	C ₃ F ₈	C4F10	C-C4F ₈	C ₅ F ₁₂	C ₆ F ₁₄	Other PFCs	PFCs	SF ₆	Other halogenated gases
CO ₂ equivalent conversion factors	7,390	12,200	8,830	8,860	10,300	9,160	9,300	he	Total	22,800	Other haloge gases
[Source of the factor: IPCC AR4]	7,000	12,200	0,000	0,000	10,500	3,100	3,500	ŏ	ř	22,000	Da Da Ga
				nal mass i	unit (Gg)						
2G Other Product Manufacture and Use	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO		0.01	NE, NO
2G1 Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE		0.01	NE
2G1a Manufacture of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
2G1b Use of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE		0.01	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
2G1c. Disposal of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
2G2 SF6 and PFCs from Other Product Uses	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO		NE, NO	NE, NO
2G2a Military Applications	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
2G2b Accelerators	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
University and Research Particle Accelerators	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
Industrial and Medical Particle Accelerators	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
(information) Reduced amount	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE
2G2c Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
(information) Reduced amount	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO
2G4 Other (please specify)											NO
(information) Reduced amount											NO

Categories	CF₄	C ₂ F ₆	င္မွိနို	C4F10	c-C4F8	C ₅ F ₁₂	C ₆ F ₁₄	r PFCs	PFCs	SF ₆	r yenated s
CO ₂ equivalent conversion factors [Source of the factor: IPCC AR4]	7,390	12,200	8,830	8,860	10,300	9,160	9,300	Other	Total	22,800	Other halog gases
[Source of the factor. If GO AN4]	Emi	ssions in (CO₂ equiv	alent unit	(Gg CO2	eq.)					0 1 0,
2G Other Product Manufacture and Use	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	146.74	NE, NO
2G1 Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE	NE	146.74	NE
2G1a Manufacture of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2G1b Use of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE	NE	146.74	NE
2G1c Disposal of Electrical Equipment	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2G2 SF6 and PFCs from Other Product Uses	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
2G2a Military Applications (AWACS)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2G2b Accelerators	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
University and Research Particle Accelerators	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Industrial and Medical Particle Accelerators	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2G2c Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2G4 Other (please specify)											NO

Table A – 14i: IPPU Background Table for GHG Inventory Year 2019 - 2G (2G3, 2G4) Other Product Manufacture and Use - N₂O, CO₂, CH₄

							Emi	ssions		
	Categories	Activity Data			N₂O (Gg)		CO ₂ (Gg)		CH₄ (Gg)	
		Description	Quantity	Unit	Emissions	(information) Reduction	Emissions	(information) Reduction	Emissions	(information) Reduction
2G3	N ₂ O from Product Uses				0.20	NO,NE				
2G3a	Medical Applications	N ₂ O supplied	196.94	tonne	0.20	NO				
2G3b	Propellant for Pressure and Aerosol Products	N ₂ O supplied	NE	tonne	NE	NE				
2G3c	Other (please specify)	N₂O supplied	NO	tonne	NO	NO				
2G4	Other (please specify)	NO	NO	tonne			NO	NO	NO	NO

Table A – 14j: IPPU Background Table for GHG Inventory Year 2019 - 2H Other

		y Data Emissions								
		Activit	y Data	CO ₂ (Gg)		CH₄	(Gg)	N₂O (Gg)		
	Categories	Categories Quantity Unit		Emissions	(information) Reduction	Emissions	(information) Reduction	Emissions	(information) Reduction	
2H	Other			NE, NO	NE, NO	NE, NO	NE, NO	NO	NO	
2H1	Pulp and Paper Industry	NE	NE	NE	NE	NE	NE			
2H2	Food and Beverages Industry	NE	NE	NE	NE	NE	NE			
2H3	Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	

Table A – 14k: IPPU Background Table for GHG Inventory Year 2019 - Greenhouse gases without CO2 equivalent conversion factors

	Categories	(Please specify)				
	Emissions in original mass	unit (tonne)				
	Total					
2B Che	mical Industry	NO	NO	NO	NO	NO
2B9	Fluorochemical Production	NO	NO	NO	NO	NO
2B9a	By-product Emissions	NO	NO	NO	NO	NO
2B9b	Fugitive Emissions	NO	NO	NO	NO	NO
2B10	Other (please specify)	NO	NO	NO	NO	NO
2C Meta	al Industry	NO	NO	NO	NO	NO
2C4	Magnesium Production	NO	NO	NO	NO	NO
2C7	Other (please specify)	NO	NO	NO	NO	NO
2E Elec	tronics Industry	NO	NO	NO	NO	NO
2E1	Integrated Circuit or Semiconductor	NO	NO	NO	NO	NO
2E2	TFT Flat Panel Display	NO	NO	NO	NO	NO
2E3	Photovoltaics	NO	NO	NO	NO	NO
2E4	Heat Transfer Fluid	NO	NO	NO	NO	NO
2E5	Other (please specify)	NO	NO	NO	NO	NO
2F Prod	luct Uses as Substitutes for Ozone Depleting Substances	NO	NO	NO	NO	NO
2F1	Refrigeration and Air Conditioning	NO	NO	NO	NO	NO
2F1a	Refrigeration and Stationary Air Conditioning	NO	NO	NO	NO	NO
2F1b	Mobile Air Conditioning	NO	NO	NO	NO	NO
2F2	Foam Blowing Agents	NO	NO	NO	NO	NO
2F3	Fire Protection	NO	NO	NO	NO	NO
2F4	Aerosols	NO	NO	NO	NO	NO
2F5	Solvents	NO	NO	NO	NO	NO
2F6	Other Applications (please specify)	NO	NO	NO	NO	NO

	Categories	(Please specify)				
	Emissions in original mass un	it (tonne)				
	Total					
2G. Oth	er Product Uses	NO	NO	NO	NO	NO
2G1	Electrical Equipment	NO	NO	NO	NO	NO
2G1a	Manufacture of Electrical Equipment	NO	NO	NO	NO	NO
2G1b	Use of Electrical Equipment	NO	NO	NO	NO	NO
2G1c	Disposal of Electrical Equipment	NO	NO	NO	NO	NO
2G2	SF6 and PFCs from Other Product Uses	NO	NO	NO	NO	NO
2G2a	Military Applications (AWACS)	NO	NO	NO	NO	NO
2G2b	Accelerators	NO	NO	NO	NO	NO
2G2c	Other (please specify)	NO	NO	NO	NO	NO
2G4	Other (please specify)	NO	NO	NO	NO	NO

160

Table A – 14I: IPPU Background Table for GHG Inventory Year 2019 - Allocation of CO₂ emissions from Non-Energy Use of fossil fuels: IPPU and other sectors

		Reported in ye	ear: 2019	
Category	Primary NEU fuel	Other NEU fuel(s)	Emissions Amount Reported in IPPU Sector CO₂(Gg)	In case reported elsewhere: Sub- category in 1A where these (partly) reported
2 Industrial Processes and Product Use	<u>'</u>			•
2A Mineral Industry				
(Please specify the sub-category)			NO	
2B Chemical Industry				
2B1 Ammonia Production	natural gas	oil, coal	1,224.16	
2B5 Carbide Production	petroleum coke	oil	38.02	
2B6 Titanium Dioxide Production			NO	
2B8 Petrochemical and Carbon Black Production			4,170.48	
2B8a Methanol	natural gas	coal, oil	1,363.45	
2B8b Ethylene	naphtha	gas oil; butane, ethane, propane, LPG	2,725.48	
2B8f Carbon Black			NO	
2B10 Other (Ethylene Oxide)			81.55	
2C Metal Industry				
2C1 Iron and Steel Production	coke, graphite electrode	coke, coal, graphite electrode	7,543.24	
2C2 Ferroalloys Production			NO	
2C3 Aluminium Production	(carbon electrode)	coke, coal	1216.00	
2C5 Lead Production	coke	NA	NE	
2C6 Zinc Production			NO	
2C7 Other			NO	
2D Non-Energy Products from Fuels and Solvent U	se			•
2D1 Lubricant Use	lubricants	greases	NE	
2D2 Paraffin Wax Use	waxes	NA	NE	
2D3 Solvent Use	(mineral turpentine)	coal tars and oils	NE	
2D4 Other			NO	

		Reported in y	ear: 2019	
Category	Primary NEU fuel	Other NEU fuel(s)	Emissions Amount Reported in IPPU Sector CO₂(Gg)	In case reported elsewhere: Sub- category in 1A where these (partly) reported
2H Other				
2H1 Pulp and Paper Industry	NA	NA	NE	
2H2 Food and Beverages Industry	coke	NA	NE	
2H3 Other			NO	
1 ENERGY				
1A Fuel Combustion Activities			Reported in Sector 1A	
1A1a Main Activity Electricity and Heat Production	(BF gas)	(chemical off-gases)	NE	
1A1b Petroleum Refining	NA	NA	NE	
1A1c Manufacture of Solid Fuels and Other Energy Industries	BF gas	NA	NE	
1A2 Manufacturing Industries and Construction	(BF gas)	(lubricants, chemical off-gases))	NE	

Table A - 15a: AFOLU Background Table for GHG Inventory Year 2019 - 3A1-3A2 Agriculture/Livestock

Cotogorios	Activity Data	Eı	missions
Categories	Number of Animals	CH4 (Gg)	N2O (Gg)
3A Livestock		70.56	0.40
3A1 - Enteric Fermentation	3,090,198	48.98	
3.A.1.a - Cattle	657,407	38.98	
3.A.1.a.i - Dairy Cows	45,113	3.07	
3.A.1.a.ii - Other Cattle	612,294	35.91	
3.A.1.b - Buffalo	106,988	5.88	
3.A.1.c - Sheep	121,677	0.61	
3.A.1.d - Goats	312,571	1.56	
3.A.1.e - Camels	NE	NE	
3.A.1.f - Horses	3,095	0.06	
3.A.1.g - Mules and Asses	NE	NE	
3.A.1.h - Swine	1,888,460	1.89	
3.A.1.j - Other (please specify)	NO	NO	
3.A.2 - Manure Management (1)	297,530,290	21.58	0.40
3.A.2.a - Cattle	657,407	2.16	0.08
3.A.2.a.i - Dairy cows	45,113	1.40	0.01
3.A.2.a.ii - Other cattle	612,294	0.76	0.08
3.A.2.b - Buffalo	106,988	0.21	0.00
3.A.2.c - Sheep	121,677	0.02	0.01
3.A.2.d - Goats	312,571	0.07	0.02
3.A.2.e - Camels	NE	NE	NE
3.A.2.f - Horses	3,095	0.01	0.00
3.A.2.g - Mules and Asses	NE	NE	NE
3.A.2.h - Swine	1,888,460	13.22	0.01
3.A.2.i - Poultry	294,440,092	5.89	0.28
3.A.2.j - Other (please specify)	NO	NO	NO

Table A – 15b: AFOLU Background Table for GHG Inventory Year 2019 - 3B Carbon stock changes in FOLU Year 2019 (1 of 2)

	Activit	y Data				Net carbon s	stock change	e and CO ₂ emis	sions			
				Bi	omass		D	ead organic ma	itter	Sc	oils	
Categories	Total Area (ha)	Thereof: Area of organic soils (ha)	Increase (Gg C)	Decrease (Gg C)	Carbon emitted as CH₄ and CO from fires (Gg C)	Net carbon stock change (Gg C)	Carbon stock change (Gg C)	Carbon emitted as CH4 and CO from fires (Gg C)	Net carbon stock change (Gg C)	Net carbon stock change in mineral soils (Gg C)	Carbon loss from drained organic soils (Gg C)	Net CO ₂ emissions (Gg CO ₂)
3.B - Land	27,573,215.61	1,588,432.00	108,363.08	31,749.07	0.00	63,215.18	0.00	0.00	0.00	0.00	8,055.50	-214,714.54
3.B.1 - Forest land	17,735,291.00	523,432.00	71,146.18	6,439.53	0.00	64,706.64	0.00	0.00	0.00	0.00	68.00	237,008.39
3.B.1.a - Forest land Remaining Forest land	17,735,291.00	523,432.00	71,146.18	6,439.53	0.00	64,706.64	0.00	0.00	0.00	0.00	68.00	237,008.39
3.B.1.b - Land Converted to Forest land	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.1.b.i - Cropland converted to Forest Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.1.b.ii - Grassland converted to Forest Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.1.b.iii - Wetlands converted to Forest Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.1.b.iv - Settlements converted to Forest Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.1.b.v - Other Land converted to Forest Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.2 - Cropland	7,038,775.91	1,065,000.00	38,359.15	25,309.54	0.00	13,049.61	0.00	0.00	0.00	0.00	7,987.50	-18,561.09
3.B.2.a - Cropland Remaining Cropland	7,037,930.00	1,065,000.00	38,359.15	25,281.86	0.00	13,077.29	0.00	IE	0.00	0.00	7,987.50	-18,662.58
3.B.2.b - Land Converted to Cropland	845.91	0.00	0.00	27.68	0.00	-27.68	0.00	0.00	0.00	0.00	0.00	0.00
3.B.2.b.i - Forest Land converted to Cropland	845.91	NO	NO	27.68	NO	NO	NO	NO	NO	NO	NO	101.49
3.B.2.b.ii - Grassland converted to Cropland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.2.b.iii - Wetlands converted to Cropland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.2.b.iv - Settlements converted to Cropland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.2.b.v - Other Land converted to Cropland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.3 - Grassland	313,000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.3.a - Grassland Remaining Grassland	313,000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.3.b - Land Converted to Grassland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.3.b.i - Forest Land converted to Grassland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.3.b.ii - Cropland converted to Grassland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.3.b.iii - Wetlands converted to Grassland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.3.b.iv - Settlements converted to Grassland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.3.b.v - Other Land converted to Grassland	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.4 - Wetlands												

	Activity	Data			Net	carbon stoo	ck change	and CO ₂ e	emissions			
				Biom	ass		Dea	d organic	matter	Soi	ls	
Categories	Total Area (ha)	Thereof: Area of organic soils (ha)	Increase (Gg C)	Decrease (Gg C)	Carbon emitted as CH ₄ and CO from fires (Gg C)	Net carbon stock change (Gg C)	Carbon stock change (Gg C)	Carbon emitted as CH4 and CO from fires (Gg C)	Net carbon stock change (Gg C)	Net carbon stock change in mineral soils (Gg C)	Carbon loss from drained organic soils (Gg C)	Net CO ₂ emissions (Gg CO ₂)
3.B.5 - Settlements	2,486,148.70	0.00	-1,142.26	0.00	0.00	-14,541.07	0.00	0.00	0.00	0.00	0.00	40,854.94
3.B.5.a - Settlements Remaining Settlements	2,327,114.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.B.5.b - Land Converted to Settlements	159,034.70	0.00	-11,142.26	4,841.79	0.00	-14,541.07	0.00	0.00	0.00	0.00	0.00	40,854.94
3.B.5.b.i - Forest Land converted to Settlements	137,105.00	0.00	-9,699.28	4,841.79	0.00	-14,541.07	0.00	0.00	0.00	0.00	0.00	35,564.03
3.B.5.b.ii - Cropland converted to Settlements	21,929.70	0.00	-1,442.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5,290.91
3.B.5.b.iii - Grassland converted to Settlements	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.5.b.iv - Wetlands converted to Settlements	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.5.b.v - Other Land converted to Settlements	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6 - Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.a - Other land Remaining Other land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b - Land Converted to Other land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b.i - Forest Land converted to Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b.ii - Cropland converted to Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b.iii - Grassland converted to Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b.iv - Wetlands converted to Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3.B.6.b.v - Settlements converted to Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Table A – 15c: AFOLU Background Table for GHG Inventory Year 2019 - Emissions in Wetlands (3B4)

Catagorias	Activity Data		Emissions	
Categories	Area (ha)	CO ₂ (Gg)	CH₄ (Gg)	N₂O (Gg)
3.B.4 - Wetlands	622,000.00	NO	NO	NO
3.B.4.a - Wetlands Remaining Wetlands	622,000.00	NO	NO	NO
3.B.4.a.i - Peatlands remaining peatlands	0.00	NO	NO	NO
3.B.4.a.ii - Flooded land remaining flooded land	622,000.00	NO	NO	NO
3.B.4.b - Land Converted to Wetlands	0.00	NO	NO	NO
3.B.4.b.i - Land converted for peat extraction	0.00	NO	NO	NO
3.B.4.b.ii - Land converted to flooded land	0.00	NO	NO	NO
3.B.4.b.iii - Land converted to other wetlands	0.00	NO	NO	NO

Table A – 15d: AFOLU Background Table for GHG Inventory Year 2019 - Biomass Burning (3C1) Year 2019 (1 of 2)

	Activity Data			Emissions							Information item: Carbon emitted as CH₄	
Categories		Unit	Values	CO ₂	CH ₄		N₂O	СО		NO _x	and CO	
	Description				Biomass	DOM		Biomass	DOM		Biomass	DOM
		(ha or kg dm)					(0	∋ g)			(C Gg)	
3C1 Biomass Burning	Area burned	ha	23,340.50	0.00	0.44	0.31	0.02	6.66	1.04	0.38	16.13	0.68
3C1a Biomass Burning in Forest Land	Area burned	ha	2,757.40	0.00	0.44	0.00	0.01	6.66	0.00	0.10	16.13	0.00
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires	Area burned	ha	2,757.40	0.00	0.44	0.00	0.01	6.66	0.00	0.10	16.13	0.00
3C1b Biomass Burning in Cropland	Area burned	ha	20,583.10	0.00	0.00	0.31	0.01	0.00	1.04	0.28	0.00	0.68
Biomass Burning in Cropland Remaining Cropland				0.00	0.00	0.31	0.01	0.00	1.04	0.28	0.00	0.68
Controlled Burning	Area burned	ha	20,583.10	NA	NA	0.31	0.01	0.00	1.04	0.28	0.00	0.68
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO
Biomass burning in Forest Land Converted to Cropland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO
Biomass Burning in Non Forest Land Converted to Cropland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO

	Activity Data			Emissions							Information item: Carbon emitted as CH₄	
Categories		Unit	Values	CO ₂	CH₄		N ₂ O	СО		NO _x	Carbon em and	· ·
	Description			_	Biomass	DOM		Biomass	DOM	^	Biomass	DOM
		(ha or kg dm)					(0	∋g)			(C Gg)	
3C1c Biomass Burning in Grassland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Burning in Grassland Remaining Grassland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO
Burning in Forest Land												
Converted to Grassland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO
Burning in Non Forest Land Converted to Grassland				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO
3C1d Biomass Burning in All Other Land				NO	NO	NO	NO	NO	NO	NO	NO	NO
Biomass Burning in Other Land Remaining All Other Land				NO	NO	NO	NO	NO	NO	NO	NO	NO
Controlled Burning				NO	NO	NO	NO	NO	NO	NO	NO	NO
Wildfires				NO	NO	NO	NO	NO	NO	NO	NO	NO

Table A – 15e: AFOLU Background Table for GHG Inventory Year 2019 - CO₂ Emission form Liming (3C2)

		Emissions			
Categories	Limestone CaCO3 (Mg / yr)	Dolomite CaMg(CO3)2 (Mg / yr)	Total amount of lime categories applied (Mg / yr)	CO ₂ (Gg)	
3.C.2 - Liming	49,253.99	ΙΕ	49,253.99	21.67	
Forest Land	NO	NO	NO	NO	
Cropland	49,253.99	IE	49,253.99	21.67	
Grassland	NO	NO	NO	NO	
Wetland	NO	NO	NO	NO	
Settlements	NO	NO	NO	NO	
Other Land	NO	NO	NO	NO	

Table A – 15f: AFOLU Background Table for GHG Inventory Year 2019 - CO₂ Emission from Urea Fertilisation (3C3)

	Activity Data	Emissions
Categories	Annual Average Population (Mg / yr)	CO2 (Gg)
3.C.3 - Urea application	531,674.90	389.89
Forest Land	NO	NO
Cropland	531,674.90	389.89
Grassland	NO	NO
Wetland	NO	NO
Settlements	NO	NO
Other Land	NO	NO

178

Table A – 15g: AFOLU Background Table for GHG Inventory Year 2019 - Direct N₂O Emission from Managed Soils (3C4)

	Activity Data	Emissions
Categories	Total amount of nitrogen applied (Gg N / yr)	N2O (Gg)
3.C.4 - Direct N2O Emissions from Managed Soils	613,266,883.28	12.54
Inorganic N fertilizer application	412,659,784.40	6.78
Forest Land	NO	NO
Cropland	412,659,784.40	6.48
Other Cropland - flooded rice	63,399,856.00	0.30
Grassland	NO	NO
Wetland	NO	NO
Settlements	NO	NO
Other Land	NO	NO
Organic N applied as fertilizer (manure and sewage sludge)	63,112,066.21	0.99
Forest Land	NO	NO
Cropland	63,112,066.21	0.99
Grassland	NO	NO
Wetland	NO	NO
Settlements	NO	NO
Other Land	NO	NO
Urine and dung N deposited on pasture, range and paddock by grazing animals	39,106,481.71	1.11
N in crop residues	98,388,550.96	1.55
Inorganic N fertilizer application- flooded rice	20,549,613.81	0.10
	Area (ha)	
N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils	NO	0.00
Drainage/management of organic soils (i.e., Histosols)	1,065,584.00	2.01

Table A – 15h: AFOLU Background Table for GHG Inventory Year 2019 - Indirect N₂O Emission from Managed Soils and Manure Management (3C4 and 3C6)

	Activity Data	Emissions
Categories	Total amount of nitrogen applied / excreted (Gg N / yr)	N ₂ O (Gg)
3.C.5 - Indirect N2O Emissions from managed soils	1,275.49	3.53
From atmospheric deposition of N volatilized from managed soils from agricultural inputs of N (synthetic N fertilizers; organic N applied as fertilizer; urine and dung N deposited on pasture, range and paddock by grazing animals (2)	578.28	1.07
Forest Land	NO	NO
Cropland	578.28	1.07
Grassland	NO	NO
Wetland	NO	NO
Settlements	NO	NO
Other Land	NO	NO
From N leaching/runoff from managed soils (i.e. from synthetic N fertilizers; organic N applied as fertilizer; urine and dung N deposited on pasture, range and paddock by grazing animals (2); N in crop residues (3); and N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils)	697.22	2.47
Forest Land	NO	NO
Cropland	697.22	2.47
Grassland	NO	NO
Wetland	NO	NO
Settlements	NO	NO
Other Land	NO	NO
3.C.6 - Indirect N2O Emissions from manure management	233.68	1.82

Table A – 15i: AFOLU Background Table for GHG Inventory Year 2019 - Non-CO₂ GHG Emission Not Included Elsewhere (3C7)

Cotogorios	Activity Data	Emis	sions
Categories	Area (ha)	CH4 (Gg)	N2O (Gg)
3.C.7 - Rice cultivation	672,084.00	90.76	IE*
3.C.8 - Other (please specify)	0.00	0.00	0.00
*Direct N2O emission from flooded rice is reported	d in Table A - 15g		

Table A – 15j: AFOLU Background Table for GHG Inventory Year 2019 - Harvested Wood Products (3D1) - Annual Carbon HWP Contribution to Total AFOLU CO2 Removal and Emission and Background Information (Years: 1990 – 2008)

						Variable N	umber				
					Gg	C/yr				Gg CO2/yr	
Inventory Year	1A Annual Change in stock of HWP in use from consumption	1B Annual Change in stock of HWP in SWDS from consumption		2B Annual Change in stock of HWP in SWDS produced from domestic harvest	3 Annual Imports of wood, and paper products + wood fuel, pulp, recovered paper, roundwood/ chips	+ wood fuel,	5 Annual Domestic Harvest	6 Annual release of carbon to the atmosphere from HWP consumption (from fuelwood & products in use and products in SWDS)	7 Annual release of carbon to the atmosphere from HWP (including fuelwoood) where wood came from domestic harvest (from products in use and products in SWDS)	8 HWP Contribution to AFOLU CO2 emissions/re movals	9 Approach used to estimate HWP Contribution
	ΔC HWP IU	ΔC HWP SWDS DC	ΔC HWP IU DH	ΔC HWP SWDS DH	Pim	Pex	Н	↑C HWP DC	↑C HWP DH		
1990	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1991	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1992	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1993	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1994	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1995	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1996	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1997	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1998	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
1999	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2000	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2001	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2002	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2003	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2004	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2005	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2006	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2007	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2008	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC

(Years: 2009 - 2019)

	Variable Number										
					Gg	C/yr				Gg CO2/yr	
Inventory Year	1A Annual Change in stock of HWP in use from consumption	1B Annual Change in stock of HWP in SWDS from consumption	2A Annual Change in stock of HWP in use produced from domestic harvest	2B Annual Change in stock of HWP in SWDS produced from domestic harvest	3 Annual Imports of wood, and paper products + wood fuel, pulp, recovered paper, roundwood/ chips	4 Annual Exports of wood, and paper products + wood fuel, pulp, recovered paper, roundwood/ chips	5 Annual Domestic Harvest	6 Annual release of carbon to the atmosphere from HWP consumption (from fuelwood & products in use and products in SWDS)	7 Annual release of carbon to the atmosphere from HWP (including fuelwoood) where wood came from domestic harvest (from products in use and products in SWDS)	8 HWP Contribution to AFOLU CO2 emissions/re movals	9 Approach used to estimate HWP Contribution
	ΔC HWP IU DC	ΔC HWP SWDS DC	ΔC HWP IU DH	ΔC HWP SWDS DH	Pim	Pex	Н	↑C HWP DC	↑C HWP DH		
2009	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2010	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2011	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2012	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2013	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2014	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2015	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2016	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2017	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2018	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC
2019	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	SC

Table A - 16a: Waste Background Table for GHG Inventory Year 2019 - CO₂, CH₄, N₂O Emissions

				Emis	sions Fa	ctor	Emissions		
Categories	Type of Activity Data	Activity Data	Unit	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O
				(Gg/un	it activity	data)	(Gg)		
4A Solid Waste Disposal								467.25	NA, NO
4A1 Managed Waste Disposal Sites		1,912.73	Gg		1.00	NA		65.41	NA
4A2 Unmanaged Waste Disposal Sites	Total MSW	11,977.84	Gg		0.80	NA		401.83	NA
4A3 Uncategorised Waste Disposal Sites		NO	Gg		0.60	NO		NO	NO
4B Biological Treatment of Solid Waste	Total annual amount treated by biological treatment facilities	2.43	Gg		4.00	0.24		0.01	0.00
4C Incineration and Open Burning of Waste	_						42.77	0.08	0.01
4C1 Waste Incineration		81.32	Gg				42.09	0.00	0.01
Hazardous Waste	Annual consumt of words in singular	47.56	Gg	0.48	0.00	100.00	22.78	0.00	0.00
Clinical Waste	Annual amount of waste incinerated	33.76	Gg	0.57	0.00	100.00	19.31	0.00	0.00
Fossil Liquid Waste		0.00	Gg	2.93	NA	NA	0.00	NA	NA
4C2 Open Burning of Waste	Total amount of waste open-burned	11.55	Gg	0.06	0.01	0.00	0.68	0.08	0.00
4D Wastewater Treatment and Discharge								645.98	1.27
4D1 Domestic Wastewater Treatment and Discharge								67.48	1.27
CH ₄ Emissions		517.12	kg BOD					67.48	
Centralized Aerobic Treatment Plant	Total amount of organically	318.86	kg BOD		0.00			0.00	
Septic Tank	degradable material in wastewater	104.04	kg BOD		0.30			29.96	
Latrin 3 (Pour Flush)	(TOW)	92.86	kg BOD		0.42			37.44	
Sea, River and Lake Discharge		1.36	kg BOD		0.06			0.08	
N ₂ O Emissions	Total amount of nitrogen in effluent (N _{EFFLUENT})	161.50	Gg N		0.00	0.01		0.00	1.27
4D2 Industrial Wastewater Treatment and Discharge	, =							578.50	NA
CH₄ Emissions		3,638.05	Gg COD					578.50	
Palm Oil Mill Effluent		3,210.11	Gg COD		0.23			572.31	
Natural Rubber (SMR & Latex)	Total Organic degradable material in	19.94	Gg COD		0.20			3.99	
Pulp and Paper	wastewater (TOW _i)	319.77	Gg COD		0.01			1.10	
Petroleum Refineries		0.01	Gg COD		0.01			0.00	
Meat & Poultry		88.23	Gg COD		0.01			1.10	
N₂O Emissions	Total amount of nitrogen in effluent (N _{EFFLUENT})	NA	Gg N			NA			NA
4E Other (please specify)		NO	NO	NO	NO	NO	NO	NO	NO

Table A – 16b: Waste Background Table for GHG Inventory Year 2019 – CH₄ Recovery

Cotogorios	Unit	CH₄		
Categories	Gg CH₄	Flared	Energy Recovery	
4A Solid Waste Disposal	11.51	0.00	11.51	
4B Biological Treatment of Solid Waste	NO	NO	NO	
4D Wastewater Treatment and Discharge	149.97	49.99	99.98	
4D1 Domestic Wastewater Treatment and Discharge	NO	NO	NO	
4D2 Industrial Wastewater Treatment and Discharge	149.97	49.99	99.98	
4E Other (please specify)	NO	NO	NO	

Table A – 16c: Waste Background Table: Long-term storage of carbon Information Items

Categories	C Gg
Information Items	
Long-term storage of carbon in waste disposal sites	-29.54
Annual change in total long-term storage of carbon stored	-22.58
Annual change in long-term storage of carbon in HWP waste	-6.96

Table A - 17: Cross Sectoral Table for GHG Inventory Year 2019 - Indirect Emission of $N_2\text{O}$

		Activity Data/ Source Emission					
	Categories	Emission NH ₃ (Gg NH ₃)	Emissions NO _x (Gg NO ₂ -equivalents)	N ₂ O (Gg N ₂ O)			
1	Energy	NO	0.62	NE			
2	Industrial Processes and Product Use	0.02	2.81	NE			
3	Agriculture, Forestry and Other Land Use	NE	NA	NE			
	3C5 Indirect N₂O Emission from managed soils	NE	NA	NE			
	3C6 Indirect N₂O Emissions from manure management	NE	NA	NE			
	Other (Biomass Burning)	NO	0.39	NE			
4	Waste	NE	NA,NE,NO	NE			
5	Other (Please specify)	NO	NO	NO			

Table A - 18: Trends of CO₂ (Gigagrams) Years: 1990 - 1998 (1 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
Total National Emissions and Removals	-30,958.43	-113,569.45	-84,599.72	-123,549.10	-100,704.50	-110,349.73	-103,197.75	-100,517.38	-105,012.95
1 ENERGY	60,381.74	70,155.66	76,063.63	75,751.81	82,032.68	84,397.53	98,281.57	115,251.16	104,347.66
1A Fuel Combustion Activities	59,070.82	68,598.85	74,400.85	73,475.64	79,634.64	81,582.04	94,978.33	111,500.06	100,534.84
1A1 Energy Industries	28,454.60	35,129.83	37,595.88	35,525.66	38,489.67	37,294.10	43,174.90	56,148.68	47,596.74
1A2 Manufacturing Industries and Construction	13,981.49	15,360.48	16,661.06	17,801.90	17,975.88	19,614.39	22,898.86	23,850.07	23,651.75
1A3 Transport	14,535.17	15,640.94	16,722.43	17,403.17	19,223.19	20,448.70	23,353.19	26,885.95	25,115.23
1A4 Other Sectors	2,049.41	2,413.08	3,361.67	2,679.26	3,872.85	4,140.66	5,455.01	4,508.06	4,058.50
1A5 Non-Specified	50.16	54.52	59.82	65.65	73.06	84.19	96.37	107.30	112.62
1B Fugitive emissions from fuels	1,310.91	1,556.81	1,662.78	2,276.17	2,398.04	2,815.48	3,303.23	3,751.10	3,812.82
1B1 Solid Fuels	NA	NA	NA	NA	NA	NA	NA	NA	NA
1B2 Oil and Natural Gas	1,310.91	1,556.81	1,662.78	2,276.17	2,398.04	2,815.48	3,303.23	3,751.10	3,812.82
1B3 Other emissions from Energy Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
1C Carbon dioxide Transport and Storage									
2 INDUSTRIAL PROCESSES AND PRODUCT USE	4,275.28	4,476.29	4,336.98	4,615.13	5,495.45	5,957.99	7,952.46	8,602.35	8,270.05
2A Mineral Industry	3,441.77	3,607.94	3,461.09	3,670.17	4,264.18	4,549.56	5,087.48	5,502.23	5,603.53
2A1 Cement production	3,244.50	3,383.55	3,275.40	3,424.75	4,006.70	4,284.80	4,789.50	5,206.65	5,325.10
2A2 Lime production	77.50	85.00	92.50	100.00	107.50	115.00	122.50	130.00	137.50
2A3 Glass Production	17.10	17.88	18.65	19.43	20.21	20.98	21.76	22.53	23.31
2A4 Other Process Uses of Carbonates	102.67	121.51	74.54	125.99	129.77	128.78	153.72	143.04	117.62
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B Chemical Industry	275.02	346.05	364.06	360.66	392.84	387.82	1,787.78	1,822.96	1,899.71
2B1 Ammonia Production	132.00	199.49	213.95	207.01	235.64	227.09	225.81	179.01	241.74
2B2 Nitric Acid Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	27.74	27.35	26.97	26.58	26.19	25.81	25.42	25.03	24.65
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production	115.28	119.21	123.14	127.07	131.00	134.93	1,536.55	1,618.92	1,633.33
2B9 Fluorochemical Production									
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO

187

Years: 1990 - 1998 (2 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2C Metal Industry	558.49	522.30	511.83	584.30	838.44	1,020.60	1,077.20	1,277.16	766.82
2C1 Iron and Steel Production	558.49	522.30	511.83	584.30	838.44	1,020.60	1,077.20	1,277.16	766.82
2C2 Ferroalloys Production	NE								
2C3 Aluminium production	NO								
2C4 Magnesium production	NO								
2C5 Lead Production	NE								
2C6 Zinc Production	NO								
2C7 Other (please specify)	NO								
2D Non-Energy Products from Fuels and Solvent Use	NE, NO								
2D1 Lubricant Use	NE								
2D2 Paraffin Wax Use	NE								
2D3 Solvent Use									
2D4 Other (please specify)	NO								
2E Electronics Industry	NO								
2E1 Integrated Circuit or Semiconductor	NA								
2E2 TFT Flat Panel Display									
2E3 Photovoltaics									
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting Substances	NA,NE,NO								
2F1 Refrigeration and Air Conditioning	NA, NE								
2F2 Foam Blowing Agents	NE								
2F3 Fire Protection	NE								
2F4 Aerosols									
2F5 Solvents									
2F6 Other Applications	NO								
2G Other Product Manufacture and Use	NO								
2G1 Electrical Equipment									
2G2 SF6 and PFCs from Other Product Uses									
2G3 N2O from Product Uses									
2G4 Other (Please specify)	NO								
2H Other	NE, NO								
2H1 Pulp and Paper Industry	NE								
2H2 Food and Beverages Industry	NE								
2H3 Other (please specify)	NO								

Years: 1990 - 1998 (3 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	-95.616.21	-188,202,19	-165.001.12	-203.916.84	-188.233.43	-200,706,04	-209.432.57	-224.371.69	-217.638.84
3A Livestock								,,,	,
3A1 Enteric Fermentation									
3A2 Manure Management									
3B Land	-95,913.08	-188,378.16	-165,187.38	-204,288.09	-188,627.10	-200,932.81	-209,648.04	-224,679.16	-217,982.60
3B1 Forest land	-183,005.87	-182,335.99	-172,972.40	-187,514.25	-183,085.73	-183,814.67	-193,992.22	-199,933.52	-217,347.35
3B2 Cropland	-23,889.88	-24,244.29	-24,578.92	-24,449.98	-24,712.42	-24,525.30	-25,045.47	-25,965.76	-26,492.91
3B3 Grassland	NA, NO								
3B4 Wetlands	IE, NA, NO								
3B5 Settlements	110.982.67	18.202.12	32,363.95	7.676.14	19,171.05	7.407.17	9,389.65	1.220.12	25,857.66
3B6 Other Land	NO								
3C Aggregate sources and non-CO2 emissions sources on land	296.87	175.97	186.26	371.25	393.66	226.76	215.47	307.47	343.76
3C1 Emissions from biomass burning	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
3C2 Liming	NE NE	NE NE	NE NE	NE NE	NE NE	NE	NE	NE	NE
3C3 Urea application	296.87	175.97	186.26	371.25	393.66	226.76	215.47	307.47	343.76
3C4 Direct N2O Emissions from managed soils	200.07	170.07	100.20	07 1.20	000.00	220.70	210.47	507.17	040.70
3C5 Indirect N2O Emissions from managed soils									
3C6 Indirect N2O Emissions from managed solis 3C6 Indirect N2O Emissions from manure management									
3C7 Rice cultivations									
3C8 Other (please specify)	NO								
3D Other	NE, NO	NE, NO	NE, NO	NE, NO	NE. NO	NE, NO	NE, NO	NE, NO	NE. NO
3D1 Harvested Wood Products	NE, NO	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE, NO
3D2 Other (please specify)	NO								
4 WASTE	0.77	0.79	0.79	0.80	0.80	0.80	0.80	0.80	8.18
4A Solid Waste Disposal	0.77	0.79	0.79	0.80	0.80	0.80	0.80	0.80	0.10
4A1 Managed Waste Disposal Sites									
4A2 Unmanaged Waste Disposal Sites									
4A3 Uncategorised Waste Disposal Sites									
4A3 Uncategorised Waste Disposal Sites 4B Biological Treatment of Solid Waste									
	0.77	0.79	0.79	0.80	0.80	0.80	0.80	0.80	8.18
4C1 Waste Instrumental Properties	-							0.80 NO	
4C1 Waste Incineration	NO 0.77	NO 0.79	NO 0.79	NO 0.80	NO 0.80	NO 0.80	NO 0.80	0.80	7.39 0.79
4C2 Open Burning of Waste	0.77	0.79	0.79	0.80	0.80	0.80	0.80	0.80	0.79
4D Wastewater Treatment and Discharge									
4D1 Domestic Wastewater Treatment and Discharge									
4D2 Industrial Wastewater Treatment and Discharge	NO								
4E Other (please specify)	NO								
5 OTHER	NO								
5A Indirect N ₂ O emissions from the atmospheric deposition of nitrogen in NOx and NH3									
5B Other (please specify)	NO								

Years: 1990 - 1998 (4 of 4)

Memo items	1990	1991	1992	1993	1994	1995	1996	1997	1998
International Bunkers	1,756.68	1,958.83	2,015.96	2,233.28	3,069.22	3,228.49	3,707.11	3,899.22	5,213.51
International Aviation (International Bunkers)	1,470.05	1,610.06	1,782.73	2,041.74	2,282.08	2,706.76	3,115.11	3,357.79	3,777.80
International Water-borne Transport (International Bunkers)	286.62	348.77	233.23	191.54	787.14	521.72	592.00	541.43	1,435.71
Multilateral Operations	NO								
Information items	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO ₂ from Biomass Burning for Energy Production	NE								
CO ₂ captured	NO								
For domestic storage	NO								
For storage in other countries	NO								
Long-term storage of carbon in waste disposal sites	9.42	9.52	11.15	11.43	11.55	11.55	11.58	11.68	12.09
Annual change in total long-term storage of carbon stored	6.06	6.13	7.17	7.35	7.44	7.44	7.45	7.52	7.78
Annual change in long-term storage of carbon in HWP waste	3.36	3.39	3.97	4.07	4.12	4.12	4.13	4.16	4.31
Other (please specify)	NO								

Years: 1999-2007 (1 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007
Total National Emissions and Removals	-113,639.94	-31,629.02	-66,894.19	-86,702.64	-74,666.82	-45,148.97	-5,573.08	-42,871.53	-915.76
1 ENERGY	116,425.69	126,911.91	132,712.68	139,564.93	151,471.73	165,067.16	177,796.12	176,678.11	190,835.38
1A Fuel Combustion Activities	112,385.04	122,474.78	128,171.91	135,125.20	146,985.43	160,177.53	172,350.49	171,415.67	185,370.54
1A1 Energy Industries	54,615.10	60,006.07	62,588.92	66,192.37	75,164.74	81,484.98	91,750.26	92,979.81	101,019.60
1A2 Manufacturing Industries and Construction	23,071.71	25,891.29	26,343.90	28,470.96	29,618.13	33,358.89	35,197.35	33,870.18	37,254.40
1A3 Transport	30,365.83	32,157.46	34,908.60	35,736.62	38,044.67	40,872.90	40,540.80	39,037.00	41,409.59
1A4 Other Sectors	4,225.56	4,298.32	4,199.18	4,575.42	4,008.18	4,281.44	4,621.39	5,258.46	5,478.06
1A5 Non-Specified	106.84	121.64	131.31	149.83	149.71	179.31	240.69	270.22	208.89
1B Fugitive emissions from fuels	4,040.65	4,437.13	4,540.76	4,439.73	4,486.30	4,889.63	5,445.63	5,262.44	5,464.84
1B1 Solid Fuels	NA	NA	NA	NA	NA	NA	NA	NA	NA
1B2 Oil and Natural Gas	4,040.65	4,437.13	4,540.76	4,439.73	4,486.30	4,889.63	5,445.63	5,262.44	5,464.84
1B3 Other emissions from Energy Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
1C Carbon dioxide Transport and Storage									
2 INDUSTRIAL PROCESSES AND PRODUCT USE	8,630.27	10,473.51	10,472.19	11,973.41	13,394.73	13,501.58	13,102.13	13,936.21	13,932.78
2A Mineral Industry	5,786.90	6,911.77	6,685.39	7,480.14	8,209.94	8,196.90	8,062.24	8,603.50	8,345.58
2A1 Cement production	5,479.60	6,587.95	6,327.25	7,145.68	7,731.19	7,774.56	7,615.98	8,135.97	7,872.29
2A2 Lime production	145.00	153.00	159.00	168.00	286.50	239.25	239.24	239.23	239.21
2A3 Glass Production	24.09	24.86	25.64	26.42	25.98	29.99	28.34	29.11	32.54
2A4 Other Process Uses of Carbonates	138.21	145.96	173.51	140.05	166.26	153.11	178.68	199.19	201.54
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B Chemical Industry	1,956.77	2,401.73	2,742.00	3,373.53	3,747.99	3,651.84	3,671.91	3,972.10	3,725.90
2B1 Ammonia Production	285.30	400.70	635.88	891.16	998.37	1,013.56	988.52	1,097.49	985.38
2B2 Nitric Acid Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	24.26	23.15	24.93	22.38	68.20	51.70	49.49	47.28	45.06
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production	1,647.22	1,977.89	2,081.18	2,459.98	2,681.42	2,586.58	2,633.90	2,827.34	2,695.46
2B9 Fluorochemical Production									
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C Metal Industry	886.60	1,160.00	1,044.80	1,119.74	1,436.80	1,652.84	1,367.98	1,360.62	1,861.30
2C1 Iron and Steel Production	886.60	1,160.00	1,044.80	1,119.74	1,436.80	1,652.84	1,367.98	1,360.62	1,861.30
2C2 Ferroalloys Production	NE	NE	NE	NE	NE	NE	NE	NE	NE
2C3 Aluminium production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C4 Magnesium production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5 Lead Production	NE	NE	NE	NE	NE	NE	NE	NE	NE
2C6 Zinc Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 1999-2007 (2 of 4)

2D Non-Energy Products from Fuels and Solvent Use NE, NO	NE NE	NE, NO
2D1 Lubricant Use NF NF NF NF NF NF NF		
ADT EUDITORING COCCO	NE NE	NE
2D2 Paraffin Wax Use NE NE NE NE NE NE NE NE	INC INC	NE
2D3 Solvent Use		
2D4 Other (please specify) NO NO NO NO NO NO NO NO	NO NO	NO
	NA, NO NA, N	NA, NO
2E1 Integrated Circuit or Semiconductor NA NA NA NA NA NA NA NA	NA NA	NA
2E2 TFT Flat Panel Display		
2E3 Photovoltaics		
2E4 Heat Transfer Fluid		
2E5 Other (please specify) NO NO NO NO NO NO NO NO	NO NO	NO
2F Product Uses as Substitutes for Ozone Depleting Substances NA,NE,NO NA,N	A,NE,NO NA,NE	NA,NE,NC
2F1 Refrigeration and Air Conditioning NA, NE NA, N	NA, NE NA, I	NA, NE
2F2 Foam Blowing Agents	NE NE	NE
2F3 Fire Protection NE NE NE NE NE NE NE NE	NE NE	NE
2F4 Aerosols		
2F5 Solvents		
2F6 Other Applications NO NO NO NO NO NO NO	NO NO	NO
2G Other Product Manufacture and Use NO NO NO NO NO NO NO	NO NO	NO
2G1 Electrical Equipment		
2G2 SF6 and PFCs from Other Product Uses		
2G3 N2O from Product Uses		
2G4 Other (Please specify) NO NO NO NO NO NO NO NO	NO NO	NO
2H Other NE, NO NE, N	NE, NO NE, 1	NE, NO
2H1 Pulp and Paper Industry NE NE NE NE NE NE NE NE	NE NE	NE
2H2 Food and Beverages Industry NE NE NE NE NE NE NE NE	NE NE	NE
2H3 Other (please specify) NO NO NO NO NO NO NO NO	NO NO	NO
3 AGRICULTURE, FORESTRY AND OTHER LAND USE -238,710.76 -169,029.18 -210,093.68 -238,261.33 -239,551.80 -223,741.10 -196,501.69 -23	33,513.66 -205,71	-205,718.8
3A Livestock		
3A1 Enteric Fermentation		
3A2 Manure Management		
3B Land -239,079.01 -169,397.24 -210,378.58 -238,613.80 -239,908.21 -224,169.43 -197,076.76 -23	33,977.99 -206,37	-206,371.1
3B1 Forest land -219,683.69 -212,894.31 -220,641.02 -229,882.86 -221,637.45 -216,371.29 -215,490.65 -21	9,669.75 -213,89	-213,895.8
3B2 Cropland -27,370.91 -23,213.43 -23,589.75 -24,374.94 -25,071.13 -21,902.86 -20,215.98 -20	0,359.48 -21,04	-21,041.33
3B3 Grassland	NA, NO NA, 1	NA, NO
384 Wetlands IE, NA, NO IE,	NA, NO IE, NA	IE, NA, NO
	,051.24 28,566	28,566.04
386 Other Land	NO NO	NO

Years: 1999-2007 (3 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007
3C Aggregate sources and non-CO2 emissions sources on land	368.26	368.06	284.90	352.47	356.41	428.33	575.07	464.32	652.23
3C1 Emissions from biomass burning	NA								
3C2 Liming	NE								
3C3 Urea application	368.26	368.06	284.90	352.47	356.41	428.33	575.07	464.32	652.23
3C4 Direct N2O Emissions from managed soils									
3C5 Indirect N2O Emissions from managed soils									
3C6 Indirect N2O Emissions from manure management									
3C7 Rice cultivations									
3C8 Other (please specify)	NO								
3D Other	NE, NO								
3D1 Harvested Wood Products	NE								
3D2 Other (please specify)	NO								
4 WASTE	14.85	14.74	14.63	20.35	18.53	23.39	30.37	27.80	34.94
4A Solid Waste Disposal									
4A1 Managed Waste Disposal Sites									
4A2 Unmanaged Waste Disposal Sites									
4A3 Uncategorised Waste Disposal Sites									
4B Biological Treatment of Solid Waste									
4C Incineration and Open Burning of Waste	14.85	14.74	14.63	20.35	18.53	23.39	30.37	27.80	34.94
4C1 Waste Incineration	14.06	13.95	13.85	19.57	17.76	22.62	29.61	27.04	34.19
4C2 Open Burning of Waste	0.79	0.78	0.78	0.78	0.77	0.77	0.77	0.76	0.75
4D Wastewater Treatment and Discharge									
4D1 Domestic Wastewater Treatment and Discharge									
4D2 Industrial Wastewater Treatment and Discharge									
4E Other (please specify)	NO								
5 OTHER	NO								
5A Indirect N ₂ O emissions from the atmospheric deposition of nitrogen in NOx and NH3									
5B Other (please specify)	NO								

Years: 1999-2007 (4 of 4)

Memo items	1999	2000	2001	2002	2003	2004	2005	2006	2007
International Bunkers	4,576.79	4,356.09	4,602.82	4,447.49	4,552.89	5,066.31	4,884.86	6,162.77	5,244.95
International Aviation (International Bunkers)	3,322.79	3,672.80	4,111.48	4,165.15	4,328.16	4,800.02	4,698.90	5,889.72	5,036.80
International Water-borne Transport (International Bunkers)	1,254.01	683.29	491.34	282.34	224.73	266.29	185.96	273.04	208.15
Multilateral Operations	NO								
Information items	1999	2000	2001	2002	2003	2004	2005	2006	2007
CO ₂ from Biomass Burning for Energy Production	NE	203.90	203.90	210.60	313.70	1,792.72	2,324.30	351.00	380.41
CO ₂ captured	NO								
For domestic storage	NO								
For storage in other countries	NO								
Long-term storage of carbon in waste disposal sites	12.33	12.52	145.12	18.09	18.65	18.64	204.04	3.08	2.67
Annual change in total long-term storage of carbon stored	7.93	8.06	92.90	18.86	18.97	19.53	146.99	12.01	12.11
Annual change in long-term storage of carbon in HWP waste	4.39	4.46	52.22	-0.76	-0.31	-0.89	57.05	-8.93	-9.43
Other (please specify)	NO								

Categories	2008	2009	2010	2011	2012	2013
Total National Emissions and Removals	-13,995.70	-35,656.14	-18,572.92	-23,144.22	-11,980.80	-7,039.31
1 ENERGY	199,367.73	189,769.29	204,419.10	203,461.78	218,085.26	225,729.71
1A Fuel Combustion Activities	193,680.39	184,296.16	198,363.57	197,549.38	214,160.83	220,533.56
1A1 Energy Industries	107,367.35	104,918.68	119,138.35	121,730.90	126,714.18	129,331.89
1A2 Manufacturing Industries and Construction	36,394.15	31,022.13	26,066.98	23,261.78	27,334.61	24,865.05
1A3 Transport	43,457.98	42,571.65	43,945.06	44,496.45	52,033.86	58,222.51
1A4 Other Sectors	6,216.41	5,534.53	8,926.20	7,835.90	7,526.67	7,657.03
1A5 Non-Specified	244.49	249.18	286.99	224.35	551.51	457.09
1B Fugitive emissions from fuels	5,687.34	5,473.12	6,055.53	5,912.39	3,924.43	5,196.15
1B1 Solid Fuels	NA	NA	NA	NA	NA	NA
1B2 Oil and Natural Gas	5,687.34	5,473.12	6,055.53	5,912.39	3,924.43	5,196.15
1B3 Other emissions from Energy Production	NA	NA	NA	NA	NA	NA
1C Carbon dioxide Transport and Storage						
2 INDUSTRIAL PROCESSES AND PRODUCT USE	14,533.04	14,650.48	13,885.36	14,223.98	15,714.20	15,435.13
2A Mineral Industry	8,863.22	8,385.92	7,413.25	8,089.61	8,484.62	9,320.66
2A1 Cement production	8,416.13	7,929.97	7,059.11	7,766.20	8,111.04	8,793.36
2A2 Lime production	239.20	239.19	160.55	139.19	133.86	134.12
2A3 Glass Production	31.07	29.65	29.25	29.06	29.56	30.73
2A4 Other Process Uses of Carbonates	176.82	187.12	164.36	155.17	210.16	362.44
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO
2B Chemical Industry	3,786.09	4,164.63	4,343.66	3,611.53	4,342.08	3,925.53
2B1 Ammonia Production	1,007.48	1,068.01	970.99	789.60	971.47	994.78
2B2 Nitric Acid Production	NA	NO	NO	NO	NO	NO
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	42.85	40.64	38.43	36.22	38.02	38.02
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production	2,735.76	3,055.98	3,334.25	2,785.72	3,332.60	2,892.73
2B9 Fluorochemical Production						
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO

Years: 2008-2013 (2 of 4)

Categories	2008	2009	2010	2011	2012	2013
2C Metal Industry	1,883.74	2,099.92	2,128.44	2,522.83	2,887.50	2,188.95
2C1 Iron and Steel Production	1,883.74	2,099.92	2,128.44	2,522.73	2,311.50	1,612.95
2C2 Ferroalloys Production	NE	NE	NE	NE	NE	NE
2C3 Aluminium production	NO	NO	NO	0.10	576.00	576.00
2C4 Magnesium production	NO	NO	NO	NO	NO	NO
2C5 Lead Production	NE	NE	NE	NE	NE	NE
2C6 Zinc Production	NO	NO	NO	NO	NO	NO
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO
2D Non-Energy Products from Fuels and Solvent Use	NE, NO					
2D1 Lubricant Use	NE	NE	NE	NE	NE	NE
2D2 Paraffin Wax Use	NE	NE	NE	NE	NE	NE
2D3 Solvent Use						
2D4 Other (please specify)	NO	NO	NO	NO	NO	NO
2E Electronics Industry	NA, NO					
2E1 Integrated Circuit or Semiconductor	NA	NA	NA	NA	NA	NA
2E2 TFT Flat Panel Display						
2E3 Photovoltaics						
2E4 Heat Transfer Fluid						
2E5 Other (please specify)	NO	NO	NO	NO	NO	NO
2F Product Uses as Substitutes for Ozone Depleting Substances	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
2F1 Refrigeration and Air Conditioning	NA, NE					
2F2 Foam Blowing Agents	NE	NE	NE	NE	NE	NE
2F3 Fire Protection	NE	NE	NE	NE	NE	NE
2F4 Aerosols						
2F5 Solvents						
2F6 Other Applications	NO	NO	NO	NO	NO	NO
2G Other Product Manufacture and Use	NO	NO	NO	NO	NO	NO
2G1 Electrical Equipment						
2G2 SF6 and PFCs from Other Product Uses						
2G3 N2O from Product Uses						
2G4 Other (Please specify)	NO	NO	NO	NO	NO	NO

Categories	2008	2009	2010	2011	2012	2013
2H Other	NE, NO					
2H1 Pulp and Paper Industry	NE	NE	NE	NE	NE	NE
2H2 Food and Beverages Industry	NE	NE	NE	NE	NE	NE
2H3 Other (please specify)	NO	NO	NO	NO	NO	NO
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	-227,931.50	-240,107.67	-236,909.16	-240,862.86	-245,813.30	-248,239.02
3A Livestock						
3A1 Enteric Fermentation						
3A2 Manure Management						
3B Land	-228,672.30	-240,533.81	-237,394.69	-241,252.18	-246,470.68	-248,806.44
3B1 Forest land	-218,219.52	-220,912.86	-224,941.54	-227,854.52	-232,337.47	-235,441.23
3B2 Cropland	-21,063.46	-20,841.07	-17,016.53	-16,958.06	-16,399.11	-16,473.89
3B3 Grassland	NA, NO					
3B4 Wetlands	IE, NA, NO					
3B5 Settlements	10,610.68	1,220.12	4,563.39	3,560.41	2,265.89	3,108.68
3B6 Other Land	NO	NO	NO	NO	NO	NO
3C Aggregate sources and non-CO2 emissions sources on land	740.80	426.14	485.53	389.31	657.39	567.42
3C1 Emissions from biomass burning	NA	NA	NA	NA	NA	NA
3C2 Liming	NE	NE	NE	9.07	9.07	9.07
3C3 Urea application	740.80	426.14	485.53	380.24	648.31	558.35
3C4 Direct N2O Emissions from managed soils						
3C5 Indirect N2O Emissions from managed soils						
3C6 Indirect N2O Emissions from manure management						
3C7 Rice cultivations						
3C8 Other (please specify)	NO	NO	NO	NO	NO	NO
3D Other	NE, NO					
3D1 Harvested Wood Products	NE	NE	NE	NE	NE	NE
3D2 Other (please specify)	NO	NO	NO	NO	NO	NO

Years: 2008-2013 (4 of 4)

Categories	2008	2009	2010	2011	2012	2013
4 WASTE	35.04	31.76	31.78	32.88	33.04	34.87
4A Solid Waste Disposal						
4A1 Managed Waste Disposal Sites						
4A2 Unmanaged Waste Disposal Sites						
4A3 Uncategorised Waste Disposal Sites						
4B Biological Treatment of Solid Waste						
4C Incineration and Open Burning of Waste	35.04	31.76	31.78	32.88	33.04	34.87
4C1 Waste Incineration	34.29	31.02	31.05	32.16	32.32	34.15
4C2 Open Burning of Waste	0.75	0.74	0.73	0.72	0.72	0.72
4D Wastewater Treatment and Discharge						
4D1 Domestic Wastewater Treatment and Discharge						
4D2 Industrial Wastewater Treatment and Discharge						
4E Other (please specify)	NO	NO	NO	NO	NO	NO
5 OTHER	NO	NO	NO	NO	NO	NO
5A Indirect N₂O emissions from the atmospheric deposition of nitrogen in NOx and NH3						
5B Other (please specify)	NO	NO	NO	NO	NO	NO
Memo items						
International Bunkers	5,134.03	5,107.65	5,712.17	6,638.75	5,818.77	8,110.19
International Aviation (International Bunkers)	4,941.94	4,971.43	5,535.37	5,989.76	5,637.42	6,983.50
International Water-borne Transport (International Bunkers)	192.10	136.21	176.79	648.99	181.35	1,126.69
Multilateral Operations	NO	NO	NO	NO	NO	NO
Information items						
CO ₂ from Biomass Burning for Energy Production	545.09	585.59	744.21	724.21	769.86	1,242.65
CO ₂ captured	NO	NO	NO	NO	NO	NO
For domestic storage	NO	NO	NO	NO	NO	NO
For storage in other countries	NO	NO	NO	NO	NO	NO
Long-term storage of carbon in waste disposal sites	9.03	3.36	1.43	-0.95	159.91	-42.53
Annual change in total long-term storage of carbon stored	17.06	13.92	12.61	11.05	135.08	-33.01
Annual change in long-term storage of carbon in HWP waste	-8.03	-10.56	-11.18	-12.00	24.83	-9.51
Other (please specify)	NO	NO	NO	NO	NO	NO

Years: 2014-2019 (1 of 4)

Categories	2014	2015	2016	2017	2018	2019
otal National Emissions and Removals	169.19	9,045.55	30,227.49	5,115.51	14,433.42	51,155.40
ENERGY	233,706.20	236,412.69	227,834.67	230,418.26	235,189.28	239,458.25
1A Fuel Combustion Activities	226,729.83	229,426.85	222,510.17	225,941.32	230,848.78	234,858.00
1A1 Energy Industries	133,097.15	137,226.92	130,923.78	126,615.35	129,669.97	131,274.34
1A2 Manufacturing Industries and Construction	22,907.60	25,186.18	23,855.62	31,568.84	34,149.96	33,482.54
1A3 Transport	63,039.62	59,964.23	61,924.38	61,572.82	60,185.84	63,576.39
1A4 Other Sectors	7,195.28	6,561.75	5,318.63	5,696.55	6,355.25	6,036.98
1A5 Non-Specified	490.18	487.76	487.76	487.76	487.76	487.76
1B Fugitive emissions from fuels	6,976.38	6,985.84	5,324.50	4,476.94	4,340.50	4,600.25
1B1 Solid Fuels	NA	NA	NA	NA	NA	NA
1B2 Oil and Natural Gas	6,976.38	6,985.84	5,324.50	4,476.94	4,340.50	4,600.25
1B3 Other emissions from Energy Production	NA	NA	NA	NA	NA	NA
1C Carbon dioxide Transport and Storage						
INDUSTRIAL PROCESSES AND PRODUCT USE	15,792.21	16,070.64	17,204.98	17,410.87	19,855.22	25,957.35
2A Mineral Industry	9,834.25	9,056.02	9,812.78	9,132.89	10,176.56	10,085.04
2A1 Cement production	9,467.91	8,672.60	9,125.80	8,775.60	9,064.00	9,120.65
2A2 Lime production	130.65	131.33	77.00	147.36	138.16	128.96
2A3 Glass Production	28.44	29.73	28.71	33.41	337.04	340.52
2A4 Other Process Uses of Carbonates	207.25	222.37	581.26	176.52	637.35	494.90
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO
2B Chemical Industry	4,063.32	4,182.58	4,791.70	4,814.83	5,739.51	5,432.65
2B1 Ammonia Production	1,046.35	1,022.54	1,170.28	1,114.65	1,585.27	1,224.16
2B2 Nitric Acid Production	NO	NO	NO	NO	NO	NO
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	38.02	38.02	38.02	38.02	38.02	38.02
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production	2,978.96	3,122.02	3,583.40	3,662.16	4,116.23	4,170.48
2B9 Fluorochemical Production						
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO

Years: 2014-2019 (2 of 4)

		. 201 4 -2013	(- 0)			
Categories	2014	2015	2016	2017	2018	2019
2C Metal Industry	1,894.64	2,832.04	2,600.51	3,463.15	3,939.15	10,439.66
2C1 Iron and Steel Production	1,318.64	1,616.04	1,384.51	859.64	1,107.28	7,543.24
2C2 Ferroalloys Production	NE	NE	NE	1,387.51	1,615.87	1,680.43
2C3 Aluminium production	576.00	1,216.00	1,216.00	1,216.00	1,216.00	1,216.00
2C4 Magnesium production	NO	NO	NO	NO	NO	NO
2C5 Lead Production	NE	NE	NE	NE	NE	NE
2C6 Zinc Production	NO	NO	NO	NO	NO	NO
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO
2D Non-Energy Products from Fuels and Solvent Use	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
2D1 Lubricant Use	NE	NE	NE	NE	NE	NE
2D2 Paraffin Wax Use	NE	NE	NE	NE	NE	NE
2D3 Solvent Use						
2D4 Other (please specify)	NO	NO	NO	NO	NO	NO
2E Electronics Industry	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2E1 Integrated Circuit or Semiconductor	NA	NA	NA	NA	NA	NA
2E2 TFT Flat Panel Display						
2E3 Photovoltaics						
2E4 Heat Transfer Fluid						
2E5 Other (please specify)	NO	NO	NO	NO	NO	NO
2F Product Uses as Substitutes for Ozone Depleting Substances	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
2F1 Refrigeration and Air Conditioning	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE
2F2 Foam Blowing Agents	NE	NE	NE	NE	NE	NE
2F3 Fire Protection	NE	NE	NE	NE	NE	NE
2F4 Aerosols						
2F5 Solvents						
2F6 Other Applications	NO	NO	NO	NO	NO	NO
2G Other Product Manufacture and Use	NO	NO	NO	NO	NO	NO
2G1 Electrical Equipment						
2G2 SF6 and PFCs from Other Product Uses						
2G3 N2O from Product Uses						
2G4 Other (Please specify)	NO	NO	NO	NO	NO	NO
2H Other	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
2H1 Pulp and Paper Industry	NE	NE	NE	NE	NE	NE
2H2 Food and Beverages Industry	NE	NE	NE	NE	NE	NE
2H3 Other (please specify)	NO	NO	NO	NO	NO	NO

Years: 2014-2019 (3 of 4)

Categories	2014	2015	2016	2017	2018	2019
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	-249,368.19	-243,476.20	-214,843.22	-242,747.71	-240,661.33	-214,302.97
3A Livestock						
3A1 Enteric Fermentation						
3A2 Manure Management						
3B Land	-249,952.54	-244,032.12	-215,375.05	-243,369.73	-241,264.08	-214,714.54
3B1 Forest land	-236,691.14	-233,267.34	-233,641.29	-241,312.68	-241,438.33	-237,008.39
3B2 Cropland	-16,561.31	-16,772.64	-17,433.51	-17,803.85	-18,368.96	-18,561.09
3B3 Grassland	NA, NO					
3B4 Wetlands	IE, NA, NO					
3B5 Settlements	3,299.90	6,007.86	35,699.75	15,746.81	18,543.22	40,854.94
3B6 Other Land	NO	NO	NO	NO	NO	NO
3C Aggregate sources and non-CO2 emissions sources on land	584.35	555.92	531.83	622.02	602.74	411.57
3C1 Emissions from biomass burning	NA	NA	NA	NA	NA	NA
3C2 Liming	9.07	9.07	4.54	0.00	27.12	21.67
3C3 Urea application	575.28	546.84	527.29	622.02	575.62	389.89
3C4 Direct N2O Emissions from managed soils						
3C5 Indirect N2O Emissions from managed soils						
3C6 Indirect N2O Emissions from manure management						
3C7 Rice cultivations						
3C8 Other (please specify)	NO	NO	NO	NO	NO	NO
3D Other	NE, NO					
3D1 Harvested Wood Products	NE	NE	NE	NE	NE	NE
3D2 Other (please specify)	NO	NO	NO	NO	NO	NO

201

Years: 2014-2019 (4 of 4)

Categories	2014	2015	2016	2017	2018	2019
4 WASTE	38.97	38.42	31.06	34.09	50.26	42.77
4A Solid Waste Disposal						
4A1 Managed Waste Disposal Sites						
4A2 Unmanaged Waste Disposal Sites						
4A3 Uncategorised Waste Disposal Sites						
4B Biological Treatment of Solid Waste						
4C Incineration and Open Burning of Waste	38.97	38.42	31.06	34.09	50.26	42.77
4C1 Waste Incineration	38.26	37.72	30.36	33.39	49.56	42.09
4C2 Open Burning of Waste	0.71	0.70	0.70	0.70	0.69	0.68
4D Wastewater Treatment and Discharge						
4D1 Domestic Wastewater Treatment and Discharge						
4D2 Industrial Wastewater Treatment and Discharge						
4E Other (please specify)	NO	NO	NO	NO	NO	NO
5 OTHER	NO	NO	NO	NO	NO	NO
5A Indirect N ₂ O emissions from the atmospheric deposition of nitrogen in NOx and NH3						
5B Other (please specify)	NO	NO	NO	NO	NO	NO
Memo items						
International Bunkers	8,601.03	8,539.96	8,231.15	9,312.21	9,209.31	9,431.48
International Aviation (International Bunkers)	7,930.95	7,869.88	7,561.08	8,062.07	7,866.22	8,141.80
International Water-borne Transport (International Bunkers)	670.08	670.08	670.08	1,250.14	1,343.09	1,289.68
Multilateral Operations	NO	NO	NO	NO	NO	NO
Information items						
CO ₂ from Biomass Burning for Energy Production	757.30	790.50	824.43	905.36	1,341.88	1,123.10
CO ₂ captured	NO	NO	NO	NO	NO	NO
For domestic storage	NO	NO	NO	NO	NO	NO
For storage in other countries	NO	NO	NO	NO	NO	NO
Long-term storage of carbon in waste disposal sites	12.76	25.01	16.17	-3.05	-65.70	-29.54
Annual change in total long-term storage of carbon stored	9.68	15.86	12.53	-2.49	-50.17	-22.58
Annual change in long-term storage of carbon in HWP waste	3.08	9.15	3.64	-0.56	-15.53	-6.96
Annual change in long-term storage of carbon in hvvP waste	0.00	00	0.0.	0.00	10.00	0.00

202

Table A - 19: Trends of CH₄ (Gigagrams)

Years: 1990 – 2000 (1 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Total National Emissions and Removals	831.02	880.98	913.03	1,060.42	1,089.30	1,186.65	1,296.32	1,412.72	1,393.44	1,513.40	1,600.45
1 Energy	231.22	277.14	294.96	398.36	422.56	494.57	578.13	660.56	666.27	708.73	776.62
1A Fuel Combustion Activities	5.96	6.53	7.06	7.39	8.25	8.86	10.27	11.28	11.07	12.49	12.49
1A1 Energy Industries	0.73	0.83	0.89	0.87	0.85	0.85	1.01	1.39	1.05	1.14	1.26
1A2 Manufacturing Industries and Construction	0.66	0.74	0.79	0.80	0.83	0.92	1.03	1.07	1.05	0.96	1.15
1A3 Transport	4.36	4.71	5.01	5.45	6.14	6.63	7.63	8.35	8.55	9.99	9.65
1A4 Other Sectors	0.21	0.25	0.37	0.27	0.42	0.45	0.60	0.47	0.41	0.40	0.43
1A5 Non-Specified	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B Fugitive emissions from fuels	225.25	270.61	287.90	390.97	414.32	485.71	567.86	649.28	655.21	696.24	764.12
1B1 Solid Fuels	0.09	0.06	0.07	0.21	0.14	0.10	0.07	0.09	0.28	0.24	0.30
1B2 Oil and Natural Gas	225.16	270.54	287.83	390.76	414.17	485.61	567.79	649.19	654.93	695.99	763.82
1B3 Other emissions from Energy Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1C Carbon dioxide Transport and Storage											
2 INDUSTRIAL PROCESSES AND PRODUCT USE	0.66	0.62	0.56	0.63	0.97	1.18	4.29	5.08	4.54	4.64	5.99
2A Mineral Industry	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
2A1 Cement production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2A2 Lime production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2A3 Glass Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2A4 Other Process Uses of Carbonates	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2A5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B Chemical Industry	0.00	0.00	0.00	0.00	0.00	0.00	3.12	3.60	3.66	3.69	4.75
2B1 Ammonia Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B2 Nitric Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B3 Adipic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5 Carbide Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B6 Titanium Dioxide Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7 Soda Ash Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B8 Petrochemical and Carbon Black Production	0.00	0.00	0.00	0.00	0.00	0.00	3.12	3.60	3.66	3.69	4.75
2B9 Fluorochemical Production											
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 1990 - 2000 (2 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
2C Metal Industry	0.66	0.62	0.55	0.63	0.96	1.18	1.17	1.49	0.88	0.95	1.24
2C1 Iron and Steel Production	0.66	0.62	0.55	0.63	0.96	1.18	1.17	1.49	0.88	0.95	1.24
2C2 Ferroalloys Production	NO										
2C3 Aluminium production	NO										
2C4 Magnesium production											
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO										
2D Non-Energy Products from Fuels and Solvent Use	NE, NO										
2D1 Lubricant Use											
2D2 Paraffin Wax Use	NE										
2D3 Solvent Use											
2D4 Other (please specify)	NO										
2E Electronics Industry	NO										
2E1 Integrated Circuit or Semiconductor											
2E2 TFT Flat Panel Display											
2E3 Photovoltaics											
2E4 Heat Transfer Fluid											
2E5 Other (please specify)	NO										
2F Product Uses as Substitutes for Ozone Depleting	NO										
Substances	NO	NO	NO	NO	INO	NO	NO	NO	INO	INO	INO
2F1 Refrigeration and Air Conditioning											
2F2 Foam Blowing Agents											
2F3 Fire Protection											
2F4 Aerosols											
2F5 Solvents											
2F6 Other Applications	NO										
2G Other Product Manufacture and Use	NO										
2G1 Electrical Equipment											
2G2 SF6 and PFCs from Other Product Uses											
2G3 N2O from Product Uses											
2G4 Other (Please specify)	NO										
2H Other	NE, NO										
2H1 Pulp and Paper Industry	NE										
2H2 Food and Beverages Industry	NE										
2H3 Other (please specify)	NO										

Years: 1990 – 2000 (3 of 4)

		i oui o	1330	2000 (
Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	161.54	159.41	161.24	163.32	170.03	168.22	165.11	169.36	167.73	159.34	160.53
3A Livestock	78.18	75.75	76.94	77.63	84.46	83.55	80.06	82.15	81.22	72.25	73.57
3A1 Enteric Fermentation	56.19	56.29	55.05	55.78	58.22	57.07	54.87	54.54	56.15	54.39	55.13
3A2 Manure Management	21.99	19.46	21.89	21.85	26.24	26.47	25.20	27.60	25.07	17.86	18.43
3B Land		IE, NA, NO									
3B1 Forest land	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
3B2 Cropland	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
3B3 Grassland	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B4 Wetlands	IE, NA, NO	IE, NA, NO	IE, NA, NO		IE, NA, NO	IE, NA, NO		IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
3B5 Settlements	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
3B6 Other Land	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3C Aggregate sources and Non-CO ₂ emissions sources on land	83.36	83.65	84.30	85.69	85.57	84.67	85.05	87.21	86.50	87.09	86.96
3C1 Emissions from biomass burning	0.38	0.29	0.35	0.29	0.31	0.28	0.28	0.30	0.55	0.29	0.29
3C2 Liming	0.00	0.20	0.00	0.20	0.01	0.20	0.20	0.00	0.00	0.20	0.20
3C3 Urea application											
3C4 Direct N₂O Emissions from managed soils											
3C5 Indirect N₂O Emissions from managed soils											
3C6 Indirect N ₂ O Emissions from managed solis											
3C7 Rice cultivations	82.99	83.36	83.95	85.40	85.26	84.39	84.77	86.91	85.95	86.80	86.68
	02.99 NO	03.30 NO	03.95 NO	05.40 NO	05.20 NO	04.39 NO	04.77 NO	NO	05.95 NO	NO	00.00 NO
3C8 Other (please specify) 3D Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3D1 Harvested Wood Products	NO	NO	NO	NO	INO	NO	NO	NO	NO	NO	NO
3D2 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
4 WASTE	437.60		456.27	498.11	495.74	522.68	548.78	577.72	554.90	640.69	657.31
4 WASTE 4A Solid Waste Disposal		443.81 143.58	147.76	152.02	495.74 156.39		165.38	169.98	174.65	179.40	184.23
•	139.40 NO	143.58 NO	147.76 NO			160.85 NO	165.38 NO	169.98 NO		179.40 NO	184.23 NO
4A1 Managed Waste Disposal Sites	NO	NO	NO	NO NO	NO NO	NO	NO	NO	NO NO	NO	NO
4A2 Unmanaged Waste Disposal Sites		_	147.76	_	_	_	_	_	_	_	-
4A3 Uncategorised Waste Disposal Sites	139.40	143.58		152.02	156.39	160.85	165.38	169.98	174.65	179.40	184.23
4B Biological Treatment of Solid Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C Incineration and Open Burning of Waste	0.09	0.09	0.09	0.09	0.09	0.09	0.09 NO	0.09	0.09	0.09	0.09
4C1 Waste Incineration	NO	NO	NO	NO	NO	NO		NO 0.00	0.00	0.00	0.00
4C2 Open Burning of Waste	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
4D Wastewater Treatment and Discharge	298.12	300.14	308.43	346.00	339.26	361.75	383.31	407.65	380.16	461.21	472.99
4D1 Domestic Wastewater Treatment and Discharge	66.57	66.89	67.13	67.50	67.54	68.69	69.15	69.62	70.13	70.65	71.15
4D2 Industrial Wastewater Treatment and Discharge	231.55	233.25	241.30	278.50	271.72	293.06	314.16	338.02	310.03	390.56	401.84
4E Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5 OTHER	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5A Indirect N2O emissions from the atmospheric											
deposition of nitrogen in NOx and NH3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5B Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 1990 - 2000 (4 of 4)

Memo items	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
International Bunkers	0.04	0.04	0.03	0.03	0.09	0.07	0.08	0.07	0.16	0.14	0.09
International Aviation (International Bunkers)	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.02	0.03
International Water-borne Transport (International Bunkers)	0.03	0.03	0.02	0.02	0.07	0.05	0.05	0.05	0.13	0.11	0.06
Multilateral Operations	NO										
Information items (1)											
CO2 from Biomass Burning for Energy Production											
CO2 captured											
For domestic storage											
For storage in other countries											
Long-term storage of carbon in waste disposal sites											
Annual change in total long-term storage of carbon stored											
Annual change in long-term storage of carbon in HWP											
waste											
Other (please specify)	NO										

Years: 2001 – 2010 (1 of 4)

Categories	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Total National Emissions and Removals	1,656.04	1,656.34	1,739.41	1,852.45	2,000.69	2,031.15	2,093.28	2,213.69	2,180.29	2,265.53
1 Energy	793.40	775.27	787.70	862.00	960.99	928.31	968.80	1,008.72	968.87	1,070.36
1A Fuel Combustion Activities	13.22	13.69	14.54	15.97	16.90	15.54	17.31	18.15	17.78	19.39
1A1 Energy Industries	1.29	1.42	1.59	2.08	2.44	1.81	1.89	1.99	1.94	2.13
1A2 Manufacturing Industries and Construction	1.13	1.20	1.25	1.39	1.46	1.41	1.55	1.60	1.42	1.28
1A3 Transport	10.37	10.61	11.30	12.09	12.55	11.81	13.33	13.92	13.88	14.96
1A4 Other Sectors	0.42	0.45	0.39	0.41	0.44	0.51	0.53	0.63	0.54	1.01
1A5 Non-Specified	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1B Fugitive emissions from fuels	780.18	761.58	773.16	846.04	944.09	912.77	951.48	990.58	951.09	1,050.97
1B1 Solid Fuels	0.32	0.27	0.28	0.54	0.99	0.95	1.30	1.68	1.78	1.68
1B2 Oil and Natural Gas	779.86	761.31	772.88	845.50	943.11	911.81	950.18	988.90	949.31	1,049.30
1B3 Other emissions from Energy Production	NA									
1C Carbon dioxide Transport and Storage										
2 INDUSTRIAL PROCESSES AND PRODUCT USE	6.43	8.50	10.06	9.76	9.46	10.42	10.41	10.72	12.34	13.50
2A Mineral Industry	NA,NO									
2A1 Cement production	NA									
2A2 Lime production	NA									
2A3 Glass Production	NA									
2A4 Other Process Uses of Carbonates	NA									
2A5 Other (please specify)	NO									
2B Chemical Industry	5.41	7.44	8.46	8.05	8.11	9.14	8.54	8.76	9.95	11.11
2B1 Ammonia Production	NA									
2B2 Nitric Acid Production	NO									
2B3 Adipic Acid Production	NO									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO									
2B5 Carbide Production	NA									
2B6 Titanium Dioxide Production	NO									
2B7 Soda Ash Production	NO									
2B8 Petrochemical and Carbon Black Production	5.41	7.44	8.46	8.05	8.11	9.14	8.54	8.76	9.95	11.11
2B9 Fluorochemical Production										
2B10 Other (Please specify)	NO									

Years: 2001 - 2010 (2 of 4)

Categories	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2C Metal Industry	1.02	1.06	1.60	1.71	1.35	1.28	1.87	1.96	2.39	2.39
2C1 Iron and Steel Production	1.02	1.06	1.60	1.71	1.35	1.28	1.87	1.96	2.39	2.39
2C2 Ferroalloys Production	NO									
2C3 Aluminium production	NO									
2C4 Magnesium production										
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO									
2D Non-Energy Products from Fuels and Solvent Use	NE, NO									
2D1 Lubricant Use										
2D2 Paraffin Wax Use	NE									
2D3 Solvent Use										
2D4 Other (please specify)	NO									
2E Electronics Industry	NO									
2E1 Integrated Circuit or Semiconductor										
2E2 TFT Flat Panel Display										
2E3 Photovoltaics										
2E4 Heat Transfer Fluid										
2E5 Other (please specify)	NO									
2F Product Uses as Substitutes for Ozone Depleting	NO									
Substances	NO	NO	140	NO	NO	140	140	140	NO	INO
2F1 Refrigeration and Air Conditioning										
2F2 Foam Blowing Agents										
2F3 Fire Protection										
2F4 Aerosols										
2F5 Solvents										
2F6 Other Applications	NO									
2G Other Product Manufacture and Use	NO									
2G1 Electrical Equipment										
2G2 SF6 and PFCs from Other Product Uses										
2G3 N2O from Product Uses										
2G4 Other (Please specify)	NO									

Years: 2001 - 2010 (3 of 4)

Categories	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
2H Other	NE, NO									
2H1 Pulp and Paper Industry	NE									
2H2 Food and Beverages Industry	NE									
2H3 Other (please specify)	NO									
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	158.99	158.86	161.26	163.69	163.72	164.67	168.56	168.12	169.70	169.03
3A Livestock	75.17	73.49	76.37	79.34	78.36	78.42	82.47	83.09	82.73	82.52
3A1 Enteric Fermentation	55.92	53.34	55.73	58.17	58.08	57.98	61.81	62.61	63.01	61.74
3A2 Manure Management	19.25	20.15	20.64	21.16	20.27	20.44	20.66	20.48	19.73	20.78
3B Land	IE, NA, NO									
3B1 Forest land	IE, NA, NO									
3B2 Cropland	IE, NA, NO									
3B3 Grassland	NA, NO									
3B4 Wetlands	IE, NA, NO									
3B5 Settlements	NA, NO									
3B6 Other Land	NO									
3C Aggregate sources and Non-CO ₂ emissions	83.82	85.37	84.88	84.35	85.37	86.25	86.10	85.03	86.97	86.51
sources on land	03.02	65.57	04.00	04.55	05.57	00.23	80.10	65.05	80.97	00.51
3C1 Emissions from biomass burning	0.33	0.50	0.49	0.49	0.64	0.49	0.50	0.29	0.53	0.68
3C2 Liming										
3C3 Urea application										
3C4 Direct N ₂ O Emissions from managed soils										
3C5 Indirect N ₂ O Emissions from managed soils										
3C6 Indirect N ₂ O Emissions from manure management										
3C7 Rice cultivations	83.49	84.87	84.39	83.87	84.73	85.75	85.60	84.74	86.44	85.83
3C8 Other (please specify)	NO									
3D Other	NO									
3D1 Harvested Wood Products										
3D2 Other (please specify)	NO									

Years: 2001 - 2010 (4 of 4)

Categories	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
4 WASTE	697.21	713.71	780.40	817.00	866.51	927.75	945.50	1,026.13	1,029.38	1,012.64
4A Solid Waste Disposal	189.15	202.98	216.65	230.31	243.84	270.64	294.35	312.89	333.90	347.39
4A1 Managed Waste Disposal Sites	NO	NO	NO	NO	4.88	5.41	5.89	15.64	16.69	17.37
4A2 Unmanaged Waste Disposal Sites	NO	NO	NO	NO	238.97	265.22	288.46	297.24	317.20	330.02
4A3 Uncategorised Waste Disposal Sites	189.15	202.98	216.65	230.31	NO	NO	NO	NO	NO	NO
4B Biological Treatment of Solid Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
4C Incineration and Open Burning of Waste	0.09	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08
4C1 Waste Incineration	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C2 Open Burning of Waste	0.09	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08
4D Wastewater Treatment and Discharge	507.98	510.65	563.66	586.60	622.58	657.03	651.07	713.16	695.40	665.17
4D1 Domestic Wastewater Treatment and Discharge	71.57	70.35	70.05	68.76	69.24	69.09	69.09	68.85	70.06	70.18
4D2 Industrial Wastewater Treatment and Discharge	436.41	440.29	493.61	517.84	553.34	587.93	581.98	644.31	625.35	594.99
4E Other (please specify)	NO	NO	NO							
5 OTHER	NO	NO	NO							
5A Indirect N2O emissions from the atmospheric										
deposition of nitrogen in NOx and NH3										
5B Other (please specify)	NO	NO	NO							
Memo items	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
International Bunkers	0.07	0.06	0.05	0.06	0.05	0.07	0.05	0.05	0.05	0.06
International Aviation (International Bunkers)	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.03	0.04
International Water-borne Transport (International Bunkers)	0.04	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.01	0.02
Multilateral Operations	NO	NO	NO							
Information items (1)										
CO2 from Biomass Burning for Energy Production										
CO2 captured										
For domestic storage										
For storage in other countries										
Long-term storage of carbon in waste disposal sites										
Annual change in total long-term storage of carbon stored										
Annual change in long-term storage of carbon in HWP										
waste										
Other (please specify)	NO	NO	NO							

Years: 2011 - 2019 (1 of 4)

Categories	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals	2,289.28	2,321.32	2,261.95	2,098.92	2,080.00	2,189.37	2,145.27	2,039.23	2,029.20
1 Energy	1,045.00	1,080.44	993.38	803.46	766.70	960.16	838.89	748.13	739.75
1A Fuel Combustion Activities	17.66	21.36	23.92	24.08	24.01	24.59	24.19	23.87	25.13
1A1 Energy Industries	2.34	2.31	2.53	2.46	2.31	2.32	2.04	2.15	2.29
1A2 Manufacturing Industries and Construction	1.15	1.30	1.15	1.10	1.21	1.14	1.36	1.39	1.37
1A3 Transport	13.31	16.92	19.40	19.74	19.78	20.60	20.21	19.62	20.75
1A4 Other Sectors	0.85	0.82	0.82	0.77	0.69	0.51	0.57	0.69	0.70
1A5 Non-Specified	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1B Fugitive emissions from fuels	1,027.34	1,059.08	969.46	779.38	742.69	935.57	814.70	724.25	714.63
1B1 Solid Fuels	2.28	1.08	1.96	1.27	0.91	0.79	0.82	0.73	0.95
1B2 Oil and Natural Gas	1,025.06	1,058.00	967.51	778.11	741.78	934.78	813.87	723.52	713.68
1B3 Other emissions from Energy Production	NA								
1C Carbon dioxide Transport and Storage									
2 INDUSTRIAL PROCESSES AND PRODUCT USE	11.79	12.98	10.23	10.61	11.65	13.52	13.13	13.70	14.08
2A Mineral Industry	NA,NO								
2A1 Cement production	NA								
2A2 Lime production	NA								
2A3 Glass Production	NA								
2A4 Other Process Uses of Carbonates	NA								
2A5 Other (please specify)	NO								
2B Chemical Industry	8.97	11.01	9.22	10.02	10.70	12.87	12.68	13.13	13.11
2B1 Ammonia Production	NA								
2B2 Nitric Acid Production	NO								
2B3 Adipic Acid Production	NO								
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO								
2B5 Carbide Production	NA								
2B6 Titanium Dioxide Production	NO								
2B7 Soda Ash Production	NO								
2B8 Petrochemical and Carbon Black Production	8.97	11.01	9.22	10.02	10.70	12.87	12.68	13.13	13.11
2B9 Fluorochemical Production									
2B10 Other (Please specify)	NO								

Years: 2011 - 2019 (2 of 4)

Categories	2011	2012	2013	2014	2015	2016	2017	2018	2019
2C Metal Industry	2.82	1.97	1.00	0.59	0.96	0.66	0.45	0.56	0.97
2C1 Iron and Steel Production	2.82	1.97	1.00	0.59	0.96	0.66	0.05	0.09	0.41
2C2 Ferroalloys Production	NO	NO	NO	NO	NO	NO	0.40	0.48	0.56
2C3 Aluminium production	NA								
2C4 Magnesium production									
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)	NO								
2D Non-Energy Products from Fuels and Solvent Use	NE, NO								
2D1 Lubricant Use									
2D2 Paraffin Wax Use	NE								
2D3 Solvent Use									
2D4 Other (please specify)	NO								
2E Electronics Industry	NO								
2E1 Integrated Circuit or Semiconductor									
2E2 TFT Flat Panel Display									
2E3 Photovoltaics									
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting	NO								
Substances	NO	140							
2F1 Refrigeration and Air Conditioning									
2F2 Foam Blowing Agents									
2F3 Fire Protection									
2F4 Aerosols									
2F5 Solvents									
2F6 Other Applications	NO								
2G Other Product Manufacture and Use	NO								
2G1 Electrical Equipment									
2G2 SF6 and PFCs from Other Product Uses									
2G3 N2O from Product Uses									
2G4 Other (Please specify)	NO								
2H Other	NE, NO								
2H1 Pulp and Paper Industry	NE								
2H2 Food and Beverages Industry	NE								
2H3 Other (please specify)	NO								

Years: 2011 - 2019 (3 of 4)

Categories	2011	2012	2013	2014	2015	2016	2017	2018	2019
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	164.49	162.23	160.75	165.95	166.57	169.19	166.19	164.70	162.06
3A Livestock	77.62	76.59	77.20	77.14	77.12	74.99	73.95	71.98	70.56
3A1 Enteric Fermentation	57.47	55.83	56.07	55.65	55.33	54.76	52.46	50.43	48.98
3A2 Manure Management	20.15	20.76	21.13	21.49	21.79	20.22	21.49	21.55	21.58
3B Land	IE, NA, NO		IE, NA, NO						
3B1 Forest land	IE, NA, NO								
3B2 Cropland		IE, NA, NO							
3B3 Grassland	NA, NO								
3B4 Wetlands	IE, NA, NO								
3B5 Settlements	NA, NO								
3B6 Other Land	NO								
3C Aggregate sources and Non-CO ₂ emissions	00.00	05.64	00.55	00.00	00.45	04.00	00.04	00.70	04.50
sources on land	86.88	85.64	83.55	88.80	89.45	94.20	92.24	92.72	91.50
3C1 Emissions from biomass burning	0.29	0.34	0.49	0.72	0.44	3.60	0.35	0.38	0.74
3C2 Liming									
3C3 Urea application									
3C4 Direct N ₂ O Emissions from managed soils									
3C5 Indirect N₂O Emissions from managed soils									
3C6 Indirect N ₂ O Emissions from manure management									
3C7 Rice cultivations	86.59	85.30	83.06	88.08	89.01	90.61	91.89	92.34	90.76
3C8 Other (please specify)	NO								
3D Other	NO								
3D1 Harvested Wood Products									
3D2 Other (please specify)	NO								
4 WASTE	1,068.00	1,065.66	1,097.58	1,118.90	1,135.08	1,046.50	1,127.07	1,112.71	1,113.31
4A Solid Waste Disposal	360.19	371.13	394.97	413.13	431.19	439.47	451.47	463.09	467.25
4A1 Managed Waste Disposal Sites	18.01	18.56	19.75	20.66	43.12	48.34	103.84	55.57	65.41
4A2 Unmanaged Waste Disposal Sites	342.18	352.57	375.22	392.47	388.07	391.13	347.63	407.52	401.83
4A3 Uncategorised Waste Disposal Sites	NO								
4B Biological Treatment of Solid Waste	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
4C Incineration and Open Burning of Waste	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
4C1 Waste Incineration	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C2 Open Burning of Waste	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
4D Wastewater Treatment and Discharge	707.72	694.45	702.52	705.68	703.80	606.94	675.52	649.54	645.98
4D1 Domestic Wastewater Treatment and Discharge	70.01	71.16	70.97	70.64	69.04	68.65	68.83	68.45	67.48
4D2 Industrial Wastewater Treatment and Discharge	637.71	623.29	631.55	635.05	634.76	538.30	606.68	581.09	578.50
4E Other (please specify)	NO								

Years: 2011 - 2019 (4 of 4)

Categories	2011	2012	2013	2014	2015	2016	2017	2018	2019
5 OTHER	NO								
5A Indirect N2O emissions from the atmospheric									
deposition of nitrogen in NOx and NH3									
5B Other (please specify)	NO								
Memo items	2011	2012	2013	2014	2015	2016	2017	2018	2019
International Bunkers	0.10	0.06	0.15	0.12	0.12	0.11	0.17	0.18	0.18
International Aviation (International Bunkers)	0.04	0.04	0.05	0.06	0.06	0.05	0.06	0.06	0.06
International Water-borne Transport (International Bunkers)	0.06	0.02	0.10	0.06	0.06	0.06	0.11	0.12	0.12
Multilateral Operations	NO								
Information items (1)									
CO2 from Biomass Burning for Energy Production									
CO2 captured									
For domestic storage									
For storage in other countries									
Long-term storage of carbon in waste disposal sites									
Annual change in total long-term storage of carbon stored									
Annual change in long-term storage of carbon in HWP									
waste									
Other (please specify)	NO								

Table A - 20: Trends of N₂O (Gigagrams) Years: 1990 – 1998 (1 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
Total National Emissions and Removals	11.33	11.55	11.66	12.89	14.43	12.92	12.89	16.92	17.95
1 Energy	1.00	1.08	1.16	1.19	1.28	1.36	1.55	1.77	1.62
1A Fuel Combustion Activities	0.99	1.07	1.14	1.16	1.25	1.33	1.51	1.73	1.58
1A1 Energy Industries	0.17	0.18	0.19	0.19	0.17	0.18	0.21	0.27	0.20
1A2 Manufacturing Industries and Construction	0.12	0.13	0.14	0.15	0.15	0.17	0.18	0.19	0.19
1A3 Transport	0.69	0.74	0.79	0.82	0.90	0.96	1.09	1.25	1.17
1A4 Other Sectors	0.01	0.01	0.02	0.01	0.02	0.02	0.03	0.02	0.02
1A5 Non-Specified	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B Fugitive emissions from fuels	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04
1B1 Solid Fuels	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B2 Oil and Natural Gas	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04
1B3 Other emissions from Energy Production	NA								
1C Carbon dioxide Transport and Storage									
2 INDUSTRIAL PROCESSES AND PRODUCT USE	0.48	0.51	0.52	0.53	0.53	0.54	0.55	0.56	0.57
2A Mineral Industry	NO								
2A1 Cement production									
2A2 Lime production									
2A3 Glass Production									
2A4 Other Process Uses of Carbonates									
2A5 Other (please specify)	NO								
2B Chemical Industry	0.46	0.47	0.47	0.48	0.48	0.49	0.49	0.50	0.51
2B1 Ammonia Production	NA								
2B2 Nitric Acid Production	0.46	0.47	0.47	0.48	0.48	0.49	0.49	0.50	0.51
2B3 Adipic Acid Production	NO								
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO								
2B5 Carbide Production	NA								
2B6 Titanium Dioxide Production	NO								
2B7 Soda Ash Production	NO								
2B8 Petrochemical and Carbon Black Production	NA								
2B9 Fluorochemical Production									
2B10 Other (Please specify)	NO								

Year: 1990 – 1998 (2 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2C Metal Industry	NA, NE, NO								
2C1 Iron and Steel Production	NO								
2C2 Ferroalloys Production	NO								
2C3 Aluminium production									
2C4 Magnesium production									
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)	NO								
2D Non-Energy Products from Fuels and Solvent Use	NE, NO								
2D1 Lubricant Use									
2D2 Paraffin Wax Use	NE								
2D3 Solvent Use									
2D4 Other (please specify)	NO								
2E Electronics Industry	NO								
2E1 Integrated Circuit or Semiconductor	NO								
2E2 TFT Flat Panel Display									
2E3 Photovoltaics									
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting	NO								
Substances	140	140	NO	NO	110	140	140	NO	110
2F1 Refrigeration and Air Conditioning									
2F2 Foam Blowing Agents									
2F3 Fire Protection									
2F4 Aerosols									
2F5 Solvents									
2F6 Other Applications	NO								
2G Other Product Manufacture and Use	0.02	0.04	0.05	0.05	0.05	0.05	0.05	0.06	0.06
2G1 Electrical Equipment									
2G2 SF6 and PFCs from Other Product Uses									
2G3 N2O from Product Uses	0.02	0.04	0.05	0.05	0.05	0.05	0.05	0.06	0.06
2G4 Other (Please specify)									

216

Year: 1990 – 1998 (3 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2H Other	NO								
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)	NO								
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	9.26	9.36	9.34	10.49	11.88	10.25	9.99	13.74	14.90
3A Livestock	0.20	0.20	0.21	0.22	0.24	0.26	0.25	0.29	0.27
3A1 Enteric Fermentation									
3A2 Manure Management	0.20	0.20	0.21	0.22	0.24	0.26	0.25	0.29	0.27
3B Land	IE, NA, NO								
3B1 Forest land	IE, NA, NO								
3B2 Cropland	IE, NA, NO								
3B3 Grassland	NA, NO								
3B4 Wetlands	IE, NA, NO								
3B5 Settlements	NA, NO								
3B6 Other Land	NO								
3C Aggregate sources and Non-CO ₂ emissions	0.00	0.40	0.40	40.07	44.05	0.00	0.74	40.45	44.00
sources on land	9.06	9.16	9.13	10.27	11.65	9.99	9.74	13.45	14.63
3C1 Emissions from biomass burning	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
3C2 Liming									
3C3 Urea application									
3C4 Direct N2O Emissions from managed soils	6.00	6.15	6.05	6.88	7.77	6.43	6.27	8.91	9.94
3C5 Indirect N2O Emissions from managed soils	2.01	2.05	2.01	2.28	2.58	2.13	2.08	2.94	3.25
3C6 Indirect N2O Emissions from manure management	1.04	0.95	1.06	1.10	1.29	1.41	1.38	1.59	1.43
3C7 Rice cultivations	NA								
3C8 Other (please specify)	NO								
3D Other	NO								
3D1 Harvested Wood Products									
3D2 Other (please specify)	NO								

Year: 1990 – 1998 (4 of 4)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
4 WASTE	0.59	0.60	0.65	0.69	0.73	0.77	0.80	0.85	0.86
4A Solid Waste Disposal	NA								
4A1 Managed Waste Disposal Sites	NA								
4A2 Unmanaged Waste Disposal Sites	NA								
4A3 Uncategorised Waste Disposal Sites	NA								
4B Biological Treatment of Solid Waste	NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C Incineration and Open Burning of Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C1 Waste Incineration	NO	0.00							
4C2 Open Burning of Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4D Wastewater Treatment and Discharge	0.58	0.60	0.64	0.69	0.73	0.77	0.80	0.85	0.86
4D1 Domestic Wastewater Treatment and Discharge	0.58	0.60	0.64	0.69	0.73	0.77	0.80	0.85	0.86
4D2 Industrial Wastewater Treatment and Discharge	NA								
4E Other (please specify)	NO								
Memo items	1990	1991	1992	1993	1994	1995	1996	1997	1998
International Bunkers	0.05	0.05	0.06	0.06	0.08	0.09	0.10	0.11	0.14
International Bunkers International Aviation (International Bunkers)	0.05 0.04	0.05 0.05	0.06 0.05	0.06 0.06	0.08 0.06	0.09 0.08	0.10 0.09	0.11 0.09	0.14 0.11
	0.04	0.05	0.05	0.06	0.06	0.08	0.09	0.09	0.11
International Aviation (International Bunkers)								-	_
International Aviation (International Bunkers) International Water-borne Transport (International	0.04	0.05	0.05	0.06	0.06	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers)	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1)	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage For storage in other countries Long-term storage of carbon in waste disposal sites Annual change in total long-term storage of carbon stored	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage For storage in other countries Long-term storage of carbon in waste disposal sites	0.04	0.05 0.01	0.05 0.01	0.06 0.01	0.06 0.02	0.08	0.09	0.09	0.11

Year: 1999 – 2008 (1 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total National Emissions and Removals	17.72	18.33	15.59	18.67	18.84	21.50	23.49	21.82	24.58	25.68
1 Energy	1.88	2.01	2.16	2.27	2.49	2.81	2.87	2.72	2.94	3.10
1A Fuel Combustion Activities	1.83	1.96	2.11	2.22	2.44	2.75	2.81	2.66	2.87	3.04
1A1 Energy Industries	0.23	0.25	0.28	0.34	0.45	0.58	0.64	0.57	0.67	0.70
1A2 Manufacturing Industries and Construction	0.17	0.20	0.19	0.20	0.21	0.23	0.24	0.23	0.26	0.26
1A3 Transport	1.41	1.49	1.62	1.66	1.76	1.92	1.90	1.83	1.92	2.04
1A4 Other Sectors	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.03
1A5 Non-Specified	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
1B Fugitive emissions from fuels	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07
1B1 Solid Fuels	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B2 Oil and Natural Gas	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07
1B3 Other emissions from Energy Production	NA									
1C Carbon dioxide Transport and Storage										
2 INDUSTRIAL PROCESSES AND PRODUCT USE	0.57	0.74	0.40	0.50	0.73	0.77	0.80	0.67	0.67	0.52
2A Mineral Industry	NO									
2A1 Cement production										
2A2 Lime production										
2A3 Glass Production										
2A4 Other Process Uses of Carbonates										
2A5 Other (please specify)	NO									
2B Chemical Industry	0.51	0.68	0.33	0.43	0.66	0.70	0.73	0.59	0.59	0.44
2B1 Ammonia Production	NA									
2B2 Nitric Acid Production	0.51	0.68	0.33	0.43	0.66	0.70	0.73	0.59	0.59	0.44
2B3 Adipic Acid Production	NO									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO									
2B5 Carbide Production	NA									
2B6 Titanium Dioxide Production	NO									
2B7 Soda Ash Production	NO									
2B8 Petrochemical and Carbon Black Production	NA									
2B9 Fluorochemical Production										
2B10 Other (Please specify)	NO									

Year: 1999 – 2008 (2 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2C Metal Industry			NA, NE, NO							
2C1 Iron and Steel Production	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO
2C2 Ferroalloys Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C3 Aluminium production				.,,						
2C4 Magnesium production										
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2D Non-Energy Products from Fuels and Solvent Use	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
2D1 Lubricant Use	,,,,,,	,,,,,,	,,,,,,	,,,,,	112,110	,	, , , , ,	,,,,,,	, , , , ,	,
2D2 Paraffin Wax Use	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2D3 Solvent Use										
2D4 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2E Electronics Industry	NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2E1 Integrated Circuit or Semiconductor	NO	NA	NA	ŇA	ŇA	ŇA	ŇA	NA	ŇA	NA
2E2 TFT Flat Panel Display										
2E3 Photovoltaics										
2E4 Heat Transfer Fluid										
2E5 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2F Product Uses as Substitutes for Ozone Depleting	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Substances	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2F1 Refrigeration and Air Conditioning										
2F2 Foam Blowing Agents										
2F3 Fire Protection										
2F4 Aerosols										
2F5 Solvents										
2F6 Other Applications	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Year: 1999 - 2008 (3 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2G Other Product Manufacture and Use	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08
2G1 Electrical Equipment										
2G2 SF6 and PFCs from Other Product Uses										
2G3 N2O from Product Uses	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08
2G4 Other (Please specify)										
2H Other	NO									
2H1 Pulp and Paper Industry										
2H2 Food and Beverages Industry										
2H3 Other (please specify)	NO									
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	14.38	14.67	12.11	14.95	14.65	16.93	18.78	17.36	19.89	20.97
3A Livestock	0.26	0.26	0.29	0.31	0.33	0.34	0.32	0.33	0.35	0.36
3A1 Enteric Fermentation										
3A2 Manure Management	0.26	0.26	0.29	0.31	0.33	0.34	0.32	0.33	0.35	0.36
3B Land	IE, NA, NO				IE, NA, NO	IE, NA, NO				
3B1 Forest land	IE, NA, NO									
3B2 Cropland	IE, NA, NO									
3B3 Grassland	NA, NO									
3B4 Wetlands	IE, NA, NO									
3B5 Settlements	NA, NO									
3B6 Other Land	NO									
3C Aggregate sources and Non-CO ₂ emissions	14.12	14.40	11.82	14.64	14.32	16.59	18.46	17.03	19.53	20.61
sources on land	14.12	14.40	11.02	14.64	14.32	16.59	10.40	17.03	19.55	20.61
3C1 Emissions from biomass burning	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
3C2 Liming										
3C3 Urea application										
3C4 Direct N2O Emissions from managed soils	9.74	9.98	7.93	9.97	9.67	11.39	12.93	11.84	13.68	14.52
3C5 Indirect N2O Emissions from managed soils	3.18	3.18	2.50	3.17	3.06	3.55	3.98	3.62	4.20	4.45
3C6 Indirect N2O Emissions from manure management	1.20	1.24	1.38	1.50	1.57	1.63	1.53	1.55	1.64	1.63
3C7 Rice cultivations	NA									
3C8 Other (please specify)	NO									
3D Other	NO									
3D1 Harvested Wood Products										
3D2 Other (please specify)	NO									

Year: 1999 – 2008 (4 of 4)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
4 WASTE	0.88	0.91	0.92	0.95	0.96	0.99	1.03	1.07	1.09	1.08
4A Solid Waste Disposal	NA									
4A1 Managed Waste Disposal Sites	NA									
4A2 Unmanaged Waste Disposal Sites	NA									
4A3 Uncategorised Waste Disposal Sites	NA	NA	NA	NA	NA	NA	NO	NO	NO	NO
4B Biological Treatment of Solid Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C Incineration and Open Burning of Waste	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
4C1 Waste Incineration	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
4C2 Open Burning of Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4D Wastewater Treatment and Discharge	0.88	0.90	0.91	0.94	0.96	0.99	1.03	1.06	1.08	1.08
4D1 Domestic Wastewater Treatment and Discharge	0.88	0.90	0.91	0.94	0.96	0.99	1.03	1.06	1.08	1.08
4D2 Industrial Wastewater Treatment and Discharge	NA									
4E Other (please specify)	NO									
Memo items	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
International Bunkers	0.13	0.12	0.13	0.12	0.13	0.14	0.14	0.17	0.15	0.15
International Aviation (International Bunkers)	0.09	0.10	0.12	0.12	0.12	0.13	0.13	0.16	0.14	0.14
International Water-borne Transport (International	0.03	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
Bunkers)	0.03	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
Multilateral Operations	NO									
Information items (1)										
CO2 from Biomass Burning for Energy Production										
CO2 captured										
For domestic storage										
For storage in other countries										
Long-term storage of carbon in waste disposal sites										
Annual change in total long-term storage of carbon stored										
Annual change in long-term storage of carbon in HWP waste										
Other (please specify)	NO									

Year: 2009 - 2019 (1 of 4)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals	21.29	22.87	22.81	26.30	25.44	26.99	25.62	25.87	27.00	26.00	24.41
1 Energy	3.05	3.37	3.41	3.82	4.08	4.32	4.26	4.42	4.43	4.49	4.61
1A Fuel Combustion Activities	2.99	3.30	3.34	3.78	4.02	4.24	4.18	4.36	4.38	4.44	4.56
1A1 Energy Industries	0.76	1.01	1.06	1.11	1.10	1.10	1.17	1.28	1.28	1.40	1.36
1A2 Manufacturing Industries and Construction	0.23	0.20	0.17	0.20	0.18	0.16	0.18	0.17	0.21	0.21	0.21
1A3 Transport	1.97	2.03	2.06	2.41	2.69	2.93	2.78	2.88	2.85	2.79	2.95
1A4 Other Sectors	0.02	0.05	0.04	0.04	0.04	0.03	0.03	0.02	0.02	0.03	0.04
1A5 Non-Specified	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
1B Fugitive emissions from fuels	0.06	0.07	0.07	0.04	0.06	0.08	0.08	0.06	0.05	0.05	0.05
1B1 Solid Fuels	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B2 Oil and Natural Gas	0.06	0.07	0.07	0.04	0.06	0.08	0.08	0.06	0.05	0.05	0.05
1B3 Other emissions from Energy Production	NA										
1C Carbon dioxide Transport and Storage											
2 INDUSTRIAL PROCESSES AND PRODUCT USE	0.08	0.09	0.09	0.09	0.09	0.09	0.24	0.24	0.21	0.20	0.20
2A Mineral Industry	NO										
2A1 Cement production											
2A2 Lime production											
2A3 Glass Production											
2A4 Other Process Uses of Carbonates											
2A5 Other (please specify)	NO										
2B Chemical Industry	NA, NO										
2B1 Ammonia Production	NA										
2B2 Nitric Acid Production	NO										
2B3 Adipic Acid Production	NO										
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	NO										
2B5 Carbide Production	NA										
2B6 Titanium Dioxide Production	NO										
2B7 Soda Ash Production	NO										
2B8 Petrochemical and Carbon Black Production	NA										
2B9 Fluorochemical Production											
2B10 Other (Please specify)	NO										

Year: 2009 – 2019 (2 of 4)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
2C Metal Industry	NA, NE, NO										
2C1 Iron and Steel Production	NO	NA, NO	NA, NO	NA, NO							
2C2 Ferroalloys Production	NO	NA	NA	NA							
2C3 Aluminium production											
2C4 Magnesium production											
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO										
2D Non-Energy Products from Fuels and Solvent Use	NE, NO										
2D1 Lubricant Use											
2D2 Paraffin Wax Use	NE										
2D3 Solvent Use											
2D4 Other (please specify)	NO										
2E Electronics Industry	NA, NO										
2E1 Integrated Circuit or Semiconductor	NA										
2E2 TFT Flat Panel Display											
2E3 Photovoltaics											
2E4 Heat Transfer Fluid											
2E5 Other (please specify)	NO										
2F Product Uses as Substitutes for Ozone Depleting	NO										
Substances	NO	NO	INO	NO	INO						
2F1 Refrigeration and Air Conditioning											
2F2 Foam Blowing Agents											
2F3 Fire Protection											
2F4 Aerosols											
2F5 Solvents											
2F6 Other Applications	NO										
2G Other Product Manufacture and Use	0.08	0.09	0.09	0.09	0.09	0.09	0.24	0.24	0.21	0.20	0.20
2G1 Electrical Equipment											
2G2 SF6 and PFCs from Other Product Uses											
2G3 N2O from Product Uses	0.08	0.09	0.09	0.09	0.09	0.09	0.24	0.24	0.21	0.20	0.20
2G4 Other (Please specify)											
2H Other	NO										
2H1 Pulp and Paper Industry											
2H2 Food and Beverages Industry											
2H3 Other (please specify)	NO										

Year: 2009 - 2019 (3 of 4)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
3 AGRICULTURE, FORESTRY AND OTHER LAND USE	17.05	18.27	18.14	21.19	20.04	21.35	19.89	19.97	21.10	20.03	18.32
3A Livestock	0.37	0.38	0.39	0.40	0.42	0.44	0.44	0.44	0.42	0.39	0.40
3A1 Enteric Fermentation											
3A2 Manure Management	0.37	0.38	0.39	0.40	0.42	0.44	0.44	0.44	0.42	0.39	0.40
3B Land	IE, NA, NO										
3B1 Forest land	IE, NA, NO										
3B2 Cropland	IE, NA, NO										
3B3 Grassland	NA, NO										
3B4 Wetlands	IE, NA, NO										
3B5 Settlements	NA, NO										
3B6 Other Land	NO										
3C Aggregate sources and Non-CO ₂ emissions	16.68	17.88	17.75	20.79	19.62	20.91	19.45	19.53	20.67	19.65	17.91
sources on land	10.00	17.00	17.75	20.79	19.02	20.91	19.45	19.55	20.07	19.05	17.91
3C1 Emissions from biomass burning	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.10	0.01	0.01	0.02
3C2 Liming											
3C3 Urea application											
3C4 Direct N2O Emissions from managed soils	11.55	12.47	12.38	14.61	13.67	14.60	13.52	13.51	14.56	13.91	12.54
3C5 Indirect N2O Emissions from managed soils	3.48	3.67	3.62	4.32	3.98	4.27	3.89	3.88	4.23	4.02	3.53
3C6 Indirect N2O Emissions from manure management	1.64	1.73	1.74	1.85	1.95	2.03	2.03	2.03	1.87	1.71	1.82
3C7 Rice cultivations	NA										
3C8 Other (please specify)	NO										
3D Other	NO										
3D1 Harvested Wood Products											
3D2 Other (please specify)	NO										

225

Year: 2009 – 2019 (4 of 4)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
4 WASTE	1.10	1.14	1.17	1.20	1.22	1.23	1.24	1.25	1.26	1.27	1.28
4A Solid Waste Disposal	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4A1 Managed Waste Disposal Sites	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4A2 Unmanaged Waste Disposal Sites	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4A3 Uncategorised Waste Disposal Sites	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
4B Biological Treatment of Solid Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4C Incineration and Open Burning of Waste	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
4C1 Waste Incineration	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
4C2 Open Burning of Waste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4D Wastewater Treatment and Discharge	1.10	1.14	1.16	1.19	1.22	1.22	1.23	1.24	1.25	1.26	1.27
4D1 Domestic Wastewater Treatment and Discharge	1.10	1.14	1.16	1.19	1.22	1.22	1.23	1.24	1.25	1.26	1.27
4D2 Industrial Wastewater Treatment and Discharge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4E Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo items	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
International Bunkers	0.15	0.16	0.18	0.16	0.22	0.24	0.24	0.23	0.26	0.26	0.26
1 12 20 2 20 2 2 2 2 2										00	
International Aviation (International Bunkers)	0.14	0.15	0.17	0.16	0.20	0.22	0.22	0.21	0.23	0.22	0.23
					0.20					0.22	
International Aviation (International Bunkers)	0.14 0.01	0.15 0.00	0.17 0.02	0.16 0.00	-	0.22 0.02	0.22	0.21 0.02	0.23		0.23
International Aviation (International Bunkers) International Water-borne Transport (International					0.20					0.22	
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers)	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1)	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage For storage in other countries Long-term storage of carbon in waste disposal sites	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03
International Aviation (International Bunkers) International Water-borne Transport (International Bunkers) Multilateral Operations Information items (1) CO2 from Biomass Burning for Energy Production CO2 captured For domestic storage For storage in other countries	0.01	0.00	0.02	0.00	0.20	0.02	0.02	0.02	0.03	0.22	0.03

226

Table A - 21: Trends of HFCs (CO2 equivalents Gigagrams)

Years: 1990 - 1998 (1 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
Total National Emissions and Removals							NE, NO		142.11
2 INDUSTRIAL PROCESSES AND PRODUCT USE		•					NE, NO		142.11
2A Mineral Industry	,	,	,	,	,	,	,		
2A1 Cement production									
2A2 Lime production									
2A3 Glass Production									
2A4 Other Process Uses of Carbonates									
2A5 Other (please specify)									
2B Chemical Industry	NO	NO	NO						
2B1 Ammonia Production									
2B2 Nitric Acid Production									
2B3 Adipic Acid Production									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production									
2B5 Carbide Production									
2B6 Titanium Dioxide Production									
2B7 Soda Ash Production									
2B8 Petrochemical and Carbon Black Production									
2B9 Fluorochemical Production	NO	NO	NO						
2B10 Other (Please specify)	NO	NO	NO						
2C Metal Industry	NO	NO	NO						
2C1 Iron and Steel Production									
2C2 Ferroalloys Production									
2C3 Aluminium production									
2C4 Magnesium production	NO	NO	NO						
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)	NO	NO	NO						

Years: 1990 – 1998 (1 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2D Non-Energy Products from Fuels and Solvent Use									
2D1 Lubricant Use									
2D2 Paraffin Wax Use									
2D3 Solvent Use									
2D4 Other (please specify)									
2E Electronics Industry	NE, NO								
2E1 Integrated Circuit or Semiconductor	NO								
2E2 TFT Flat Panel Display	NO								
2E3 Photovoltaics	NO								
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting Substances	NE, NO	91.05	142.11						
2F1 Refrigeration and Air Conditioning	NO	91.05	142.11						
2F2 Foam Blowing Agents	NE								
2F3 Fire Protection	NE								
2F4 Aerosols	NE								
2F5 Solvents	NE								
2F6 Other Applications	NO								
2G Other Product Manufacture and Use	NO								
2G1 Electrical Equipment									
2G2 SF ₆ and PFCs from Other Product Uses									
2G3 N ₂ O from Product Uses									
2G4 Other (Please specify)	NO								
2H Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)									

Years: 1999 – 2008 (1 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total National Emissions and Removals	193.17	190.87	411.29	511.39	327.71	449.76	518.83	504.49	563.03	642.19
2 INDUSTRIAL PROCESSES AND PRODUCT USE	193.17	190.87	411.29	511.39	327.71	449.76	518.83	504.49	563.03	642.19
2A Mineral Industry										
2A1 Cement production										
2A2 Lime production										
2A3 Glass Production										
2A4 Other Process Uses of Carbonates										
2A5 Other (please specify)										
2B Chemical Industry	NO									
2B1 Ammonia Production										
2B2 Nitric Acid Production										
2B3 Adipic Acid Production										
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production										
2B5 Carbide Production										
2B6 Titanium Dioxide Production										
2B7 Soda Ash Production										
2B8 Petrochemical and Carbon Black Production										
2B9 Fluorochemical Production	NO									
2B10 Other (Please specify)	NO									
2C Metal Industry	NO									
2C1 Iron and Steel Production										
2C2 Ferroalloys Production										
2C3 Aluminium production										
2C4 Magnesium production	NO									
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO									

Years: 1999 – 2008 (2 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2D Non-Energy Products from Fuels and Solvent Use										
2D1 Lubricant Use										
2D2 Paraffin Wax Use										
2D3 Solvent Use										
2D4 Other (please specify)										
2E Electronics Industry	NE, NO	39.49	39.49	39.49	39.49	39.49	39.49	39.49	39.49	39.49
2E1 Integrated Circuit or Semiconductor	NO	39.49	39.49	39.49	39.49	39.49	39.49	39.49	39.49	39.49
2E2 TFT Flat Panel Display	NO									
2E3 Photovoltaics	NO	NA								
2E4 Heat Transfer Fluid										
2E5 Other (please specify)	NO									
2F Product Uses as Substitutes for Ozone Depleting Substances	193.17	151.38	371.80	471.90	288.22	410.27	479.34	464.99	523.54	602.70
2F1 Refrigeration and Air Conditioning	193.17	151.38	371.80	471.90	288.22	410.27	479.34	464.99	523.54	602.70
2F2 Foam Blowing Agents	NE									
2F3 Fire Protection	NE									
2F4 Aerosols	NE									
2F5 Solvents	NE									
2F6 Other Applications	NO									
2G Other Product Manufacture and Use	NO									
2G1 Electrical Equipment										
2G2 SF ₆ and PFCs from Other Product Uses										
2G3 N ₂ O from Product Uses										
2G4 Other (Please specify)	NO									
2H Other										
2H1 Pulp and Paper Industry										
2H2 Food and Beverages Industry										
2H3 Other (please specify)										

230

Years: 2009 - 2019 (1 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals										936.96	
2 INDUSTRIAL PROCESSES AND PRODUCT USE										936.96	
2A Mineral Industry	010.10	7 20:02	000.01	111101	7 10.02	701111	100.10	707100	001102	000.00	0.000
2A1 Cement production											
2A2 Lime production											
2A3 Glass Production											
2A4 Other Process Uses of Carbonates											
2A5 Other (please specify)											
2B Chemical Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B1 Ammonia Production											
2B2 Nitric Acid Production											
2B3 Adipic Acid Production											
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production											
2B5 Carbide Production											
2B6 Titanium Dioxide Production											
2B7 Soda Ash Production											
2B8 Petrochemical and Carbon Black Production											
2B9 Fluorochemical Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C Metal Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C1 Iron and Steel Production											
2C2 Ferroalloys Production											
2C3 Aluminium production											
2C4 Magnesium production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 2009 - 2019 (2 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
2D Non-Energy Products from Fuels and Solvent Use											
2D1 Lubricant Use											
2D2 Paraffin Wax Use											
2D3 Solvent Use											
2D4 Other (please specify)											
2E Electronics Industry	39.49	39.49	39.49	38.97	40.48	39.03	39.03	43.75	43.75	43.75	43.75
2E1 Integrated Circuit or Semiconductor	39.49	39.49	39.49	38.97	40.48	39.03	39.03	43.75	43.75	43.75	43.75
2E2 TFT Flat Panel Display	NO										
2E3 Photovoltaics	NA										
2E4 Heat Transfer Fluid											
2E5 Other (please specify)	NO										
2F Product Uses as Substitutes for Ozone Depleting Substances	639.24	683.53	649.08	678.39	702.85	725.44	721.37	713.25	861.06	893.20	929.77
2F1 Refrigeration and Air Conditioning	639.24	683.53	649.08	678.39	702.85	725.44	721.37	713.25	861.06	893.20	929.77
2F2 Foam Blowing Agents	NE										
2F3 Fire Protection	NE										
2F4 Aerosols	NE										
2F5 Solvents	NE										
2F6 Other Applications	NO										
2G Other Product Manufacture and Use	NO										
2G1 Electrical Equipment											
2G2 SF ₆ and PFCs from Other Product Uses											
2G3 N ₂ O from Product Uses											
2G4 Other (Please specify)	NO										
2H Other											
2H1 Pulp and Paper Industry											
2H2 Food and Beverages Industry											
2H3 Other (please specify)											

Ņ

Table A - 22: Trends of PFCs (CO₂ equivalents Gigagrams)

Years: 1990 – 1998 (1 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
Total National Emissions and Removals	NE, NO								
2 INDUSTRIAL PROCESSES AND PRODUCT USE	NE, NO								
2A Mineral Industry									
2A1 Cement production									
2A2 Lime production									
2A3 Glass Production									
2A4 Other Process Uses of Carbonates									
2A5 Other (please specify)									
2B Chemical Industry	NO								
2B1 Ammonia Production									
2B2 Nitric Acid Production									
2B3 Adipic Acid Production									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production									
2B5 Carbide Production									
2B6 Titanium Dioxide Production									
2B7 Soda Ash Production									
2B8 Petrochemical and Carbon Black Production									
2B9 Fluorochemical Production	NO								
2B10 Other (Please specify)	NO								
2C Metal Industry	NO								
2C1 Iron and Steel Production									
2C2 Ferroalloys Production									
2C3 Aluminium production	NO								
2C4 Magnesium production	NO								
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)	NO								

Years: 1990 - 1998 (2 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2D Non-Energy Products from Fuels and Solvent Use									
2D1 Lubricant Use									
2D2 Paraffin Wax Use									
2D3 Solvent Use									
2D4 Other (please specify)									
2E Electronics Industry	NO								
2E1 Integrated Circuit or Semiconductor	NO								
2E2 TFT Flat Panel Display	NO								
2E3 Photovoltaics	NO								
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting Substances	NA, NE, NO								
2F1 Refrigeration and Air Conditioning	NA, NE								
2F2 Foam Blowing Agents	NE								
2F3 Fire Protection	NE								
2F4 Aerosols	NE								
2F5 Solvents	NE								
2F6 Other Applications (please specify)	NO								
2G Other Product Manufacture and Use	NE, NO								
2G1 Electrical Equipment	NE								
2G2 SF6 and PFCs from Other Product Uses	NE, NO								
2G3 N ₂ O from Product Uses									
2G4 Other (Please specify)									
2H Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)									

Years: 1999 – 2008 (1 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total National Emissions and Removals	NE, NO	140.64	240.45	340.27	440.08	539.90	639.71	739.53	839.34	939.16
2 INDUSTRIAL PROCESSES AND PRODUCT USE	NE, NO	140.64	240.45	340.27	440.08	539.90	639.71	739.53	839.34	939.16
2A Mineral Industry										
2A1 Cement production										
2A2 Lime production										
2A3 Glass Production										
2A4 Other Process Uses of Carbonates										
2A5 Other (please specify)										
2B Chemical Industry	NO									
2B1 Ammonia Production										
2B2 Nitric Acid Production										
2B3 Adipic Acid Production										
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production										
2B5 Carbide Production										
2B6 Titanium Dioxide Production										
2B7 Soda Ash Production										
2B8 Petrochemical and Carbon Black Production										
2B9 Fluorochemical Production	NO									
2B10 Other (Please specify)	NO									
2C Metal Industry	NO									
2C1 Iron and Steel Production										
2C2 Ferroalloys Production										
2C3 Aluminium production	NO									
2C4 Magnesium production	NO									
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO									

Years: 1999 – 2008 (2 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2D Non-Energy Products from Fuels and Solvent Use										
2D1 Lubricant Use										
2D2 Paraffin Wax Use										
2D3 Solvent Use										
2D4 Other (please specify)										
2E Electronics Industry	NO	140.64	240.45	340.27	440.08	539.90	639.71	739.53	839.34	939.16
2E1 Integrated Circuit or Semiconductor	NO	140.64	240.45	340.27	440.08	539.90	639.71	739.53	839.34	939.16
2E2 TFT Flat Panel Display	NO									
2E3 Photovoltaics	NO	ΙE	ΙE	ΙE	ΙE	ΙΕ	ΙE	ΙE	ΙE	ΙE
2E4 Heat Transfer Fluid										
2E5 Other (please specify)	NO									
2F Product Uses as Substitutes for Ozone Depleting Substances	NA, NE, NO									
2F1 Refrigeration and Air Conditioning	NA, NE									
2F2 Foam Blowing Agents	NE									
2F3 Fire Protection	NE									
2F4 Aerosols	NE									
2F5 Solvents	NE									
2F6 Other Applications (please specify)	NO									
2G Other Product Manufacture and Use	NE, NO									
2G1 Electrical Equipment	NE									
2G2 SF6 and PFCs from Other Product Uses	NE, NO									
) from Product Uses										
2G4 Other (Please specify)										
2H Other										
2H1 Pulp and Paper Industry										
2H2 Food and Beverages Industry										
2H3 Other (please specify)										

Years: 2009 – 2019 (1 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals	1,038.97	1,138.79	1,445.24	2,576.01	2,668.57	3,023.58	4,694.46	4,976.28	4,976.28	4,976.28	4,976.28
2 INDUSTRIAL PROCESSES AND PRODUCT USE	1,038.97	1,138.79	1,445.24	2,576.01	2,668.57	3,023.58	4,694.46	4,976.28	4,976.28	4,976.28	4,976.28
2A Mineral Industry											
2A1 Cement production											
2A2 Lime production											
2A3 Glass Production											
2A4 Other Process Uses of Carbonates											
2A5 Other (please specify)											
2B Chemical Industry	NO										
2B1 Ammonia Production											
2B2 Nitric Acid Production											
2B3 Adipic Acid Production											
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production											
2B5 Carbide Production											
2B6 Titanium Dioxide Production											
2B7 Soda Ash Production											
2B8 Petrochemical and Carbon Black Production											
2B9 Fluorochemical Production	NO										
2B10 Other (Please specify)	NO										
2C Metal Industry	NO	NO	206.64	1,239.84	1,239.84	1,239.84	2,617.44	2,617.44	2,617.44	2,617.44	2,617.44
2C1 Iron and Steel Production											
2C2 Ferroalloys Production											
2C3 Aluminium production	NO	NO	206.64	1,239.84	1,239.84	1,239.84	2,617.44	2,617.44	2,617.44	2,617.44	2,617.44
2C4 Magnesium production	NO										
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO										

Years: 2009 - 2019 (2 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
2D Non-Energy Products from Fuels and Solvent Use											
2D1 Lubricant Use											
2D2 Paraffin Wax Use											
2D3 Solvent Use											
2D4 Other (please specify)											
2E Electronics Industry	1,038.97	1,138.79	1,238.60	1,336.17	1,428.73	1,783.74	2,077.02	2,358.84	2,358.84	2,358.84	2,358.84
2E1 Integrated Circuit or Semiconductor	1,038.97	1,138.79	1,238.60	1,270.06	1,318.91	1,271.98	1,272.02	1,425.89	1,425.89	1,425.89	1,425.89
2E2 TFT Flat Panel Display	NO	NO	NO	NO	NO						
2E3 Photovoltaics	IE	ΙE	IE	66.11	109.82	511.75	805.00	932.95	932.95	932.95	932.95
2E4 Heat Transfer Fluid											
2E5 Other (please specify)	NO	NO	NO	NO	NO						
2F Product Uses as Substitutes for Ozone Depleting Substances	NA, NE, NO	NA, NE, NO									
2F1 Refrigeration and Air Conditioning	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE						
2F2 Foam Blowing Agents	NE	NE	NE	NE	NE						
2F3 Fire Protection	NE	NE	NE	NE	NE						
2F4 Aerosols	NE	NE	NE	NE	NE						
2F5 Solvents	NE	NE	NE	NE	NE						
2F6 Other Applications (please specify)	NO	NO	NO	NO	NO						
2G Other Product Manufacture and Use	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO						
2G1 Electrical Equipment	NE	NE	NE	NE	NE						
2G2 SF6 and PFCs from Other Product Uses	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO						
2G3 N₂O from Product Uses											
2G4 Other (Please specify)											
2H Other											
2H1 Pulp and Paper Industry											
2H2 Food and Beverages Industry											
2H3 Other (please specify)											

Table A - 23: Trends of SF₆ (CO₂ equivalents Gigagrams) Years: 1990 – 1998 (1 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
Total National Emissions and Removals	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.78	1.05
2 INDUSTRIAL PROCESSES AND PRODUCT USE	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.78	1.05
2A Mineral Industry									
2A1 Cement production									
2A2 Lime production									
2A3 Glass Production									
2A4 Other Process Uses of Carbonates									
2A5 Other (please specify)									
2B Chemical Industry	NO								
2B1 Ammonia Production									
2B2 Nitric Acid Production									
2B3 Adipic Acid Production									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production									
2B5 Carbide Production									
2B6 Titanium Dioxide Production									
2B7 Soda Ash Production									
2B8 Petrochemical and Carbon Black Production									
2B9 Fluorochemical Production	NO								
2B10 Other (Please specify)	NO								
2C Metal Industry	NO								
2C1 Iron and Steel Production									
2C2 Ferroalloys Production									
2C3 Aluminium production									
2C4 Magnesium production	NO								
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)	NO								

Years: 1990 – 1998 (2 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2D Non-Energy Products from Fuels and Solvent Use									
2D1 Lubricant Use									
2D2 Paraffin Wax Use									
2D3 Solvent Use									
2D4 Other (please specify)									
2E Electronics Industry	NO								
2E1 Integrated Circuit or Semiconductor	NO								
2E2 TFT Flat Panel Display	NO								
2E3 Photovoltaics	NO								
2E4 Heat Transfer Fluid									
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting									
Substances									
2F1 Refrigeration and Air Conditioning									
2F2 Foam Blowing Agents									
2F3 Fire Protection									
2F4 Aerosols									
2F5 Solvents									
2F6 Other Applications (please specify)									
2G Other Product Manufacture and Use	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.78	1.05
2G1 Electrical Equipment	0.23	0.23	0.23	0.23	0.23	0.23	0.50	0.78	1.05
2G2 SF6 and PFCs from Other Product Uses	NE, NO								
2G3 N2O from Product Uses									
2G4 Other (Please specify)									
2H Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)									

Years: 1999 – 2008 (1 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total National Emissions and Removals	1.32	310.12	306.02	306.48	306.48	306.93	319.02	313.27	311.48	311.47
2 INDUSTRIAL PROCESSES AND PRODUCT USE	1.32	310.12	306.02	306.48	306.48	306.93	319.02	313.27	311.48	311.47
2A Mineral Industry										
2A1 Cement production										
2A2 Lime production										
2A3 Glass Production										
2A4 Other Process Uses of Carbonates										
2A5 Other (please specify)										
2B Chemical Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B1 Ammonia Production										
2B2 Nitric Acid Production										
2B3 Adipic Acid Production										
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production										
2B5 Carbide Production										
2B6 Titanium Dioxide Production										
2B7 Soda Ash Production										
2B8 Petrochemical and Carbon Black Production										
2B9 Fluorochemical Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C Metal Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C1 Iron and Steel Production										
2C2 Ferroalloys Production										
2C3 Aluminium production										
2C4 Magnesium production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 1999 – 2008 (2 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2D Non-Energy Products from Fuels and Solvent Use										
2D1 Lubricant Use										
2D2 Paraffin Wax Use										
2D3 Solvent Use										
2D4 Other (please specify)										
2E Electronics Industry	NO	304.20	304.20	304.20	304.20	304.20	304.20	304.20	304.20	304.20
2E1 Integrated Circuit or Semiconductor	NO	304.20	304.20	304.20	304.20	304.20	304.20	304.20	304.20	304.20
2E2 TFT Flat Panel Display	NO									
2E3 Photovoltaics	NO	NA								
2E4 Heat Transfer Fluid										
2E5 Other (please specify)	NO									
2F Product Uses as Substitutes for Ozone Depleting										
Substances										
2F1 Refrigeration and Air Conditioning										
2F2 Foam Blowing Agents										
2F3 Fire Protection										
2F4 Aerosols										
2F5 Solvents										
2F6 Other Applications (please specify)										
2G Other Product Manufacture and Use	1.32	5.93	1.82	2.28	2.28	2.74	14.82	9.07	7.28	7.27
2G1 Electrical Equipment	1.32	5.93	1.82	2.28	2.28	2.74	14.82	9.07	7.28	7.27
2G2 SF6 and PFCs from Other Product Uses	NE, NO									
2G3 N2O from Product Uses										
2G4 Other (Please specify)										
2H Other										
2H1 Pulp and Paper Industry										
2H2 Food and Beverages Industry										
2H3 Other (please specify)										

Years: 2009 - 2019 (1 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals	313.85	315.42	317.42	309.54	324.41	316.50	311.02	348.17	468.83	476.30	483.76
2 INDUSTRIAL PROCESSES AND PRODUCT USE	313.85	315.42	317.42	309.54	324.41	316.50	311.02	348.17	468.83	476.30	483.76
2A Mineral Industry											
2A1 Cement production											
2A2 Lime production											
2A3 Glass Production											
2A4 Other Process Uses of Carbonates											
2A5 Other (please specify)											
2B Chemical Industry	NO										
2B1 Ammonia Production											
2B2 Nitric Acid Production											
2B3 Adipic Acid Production											
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production											
2B5 Carbide Production											
2B6 Titanium Dioxide Production											
2B7 Soda Ash Production											
2B8 Petrochemical and Carbon Black Production											
2B9 Fluorochemical Production	NO										
2B10 Other (Please specify)	NO										
2C Metal Industry	NO										
2C1 Iron and Steel Production											
2C2 Ferroalloys Production											
2C3 Aluminium production											
2C4 Magnesium production	NO										
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO										

Years: 2009 - 2019 (2 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
2D Non-Energy Products from Fuels and Solvent Use											
2D1 Lubricant Use											
2D2 Paraffin Wax Use											
2D3 Solvent Use											
2D4 Other (please specify)											
2E Electronics Industry	304.20	304.20	304.20	300.19	311.74	300.50	300.66	337.03	337.03	337.03	337.03
2E1 Integrated Circuit or Semiconductor	304.20	304.20	304.20	300.19	311.74	300.50	300.66	337.03	337.03	337.03	337.03
2E2 TFT Flat Panel Display	NO										
2E3 Photovoltaics	NA										
2E4 Heat Transfer Fluid											
2E5 Other (please specify)	NO										
2F Product Uses as Substitutes for Ozone Depleting											
Substances											
2F1 Refrigeration and Air Conditioning											
2F2 Foam Blowing Agents											
2F3 Fire Protection											
2F4 Aerosols											
2F5 Solvents											
2F6 Other Applications (please specify)											
2G Other Product Manufacture and Use	9.65	11.23	13.22	9.35	12.67	16.00	10.36	11.14	131.81	139.27	146.74
2G1 Electrical Equipment	9.65	11.23	13.22	9.35	12.67	16.00	10.36	11.14			146.74
2G2 SF6 and PFCs from Other Product Uses	NE, NO										
2G3 N2O from Product Uses											
2G4 Other (Please specify)											
2H Other											
2H1 Pulp and Paper Industry											
2H2 Food and Beverages Industry											
2H3 Other (please specify)											

Table A - 24: Trends of Other Gases (NF₃) (CO₂ equivalents Gigagrams) Years: 1990 – 1998 (1 of 2)

								1998
NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
NO	NO	NO	NO	NO	NO	NO	NO	NO
	NO NO NO NO NO	NA, NO	NA, NO	1990 1991 1992 1993 NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NO NO NO NO	1990 1991 1992 1993 1994 NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NA, NO NO NO NO NO NO NO	1990 1991 1992 1993 1994 1995 NA, NO NA NO NO	1990 1991 1992 1993 1994 1995 1996 NA, NO	NO

Years: 1990 – 1998 (2 of 2)

Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998
2D Non-Energy Products from Fuels and Solvent Use									
2D1 Lubricant Use									
2D2 Paraffin Wax Use									
2D3 Solvent Use									
2D4 Other (please specify)									
2E Electronics Industry	NA, NO								
2E1 Integrated Circuit or Semiconductor	NO								
2E2 TFT Flat Panel Display	NO								
2E3 Photovoltaics	NO								
2E4 Heat Transfer Fluid	NO								
2E5 Other (please specify)	NO								
2F Product Uses as Substitutes for Ozone Depleting	NA,NO	NA,NO	NA,NO	NA,NO	NIA NIO	NA,NO	NA,NO	NA,NO	NA,NO
Substances	INA,INO	INA,INO	INA,INO	INA,INO	NA,NO	INA,INO	INA,INO	INA,INO	INA,INO
2F1 Refrigeration and Air Conditioning	NA								
2F2 Foam Blowing Agents	NA								
2F3 Fire Protection	NA								
2F4 Aerosols	NA								
2F5 Solvents	NA								
2F6 Other Applications	NO								
2G Other Product Manufacture and Use	NA,NO								
2G1 Electrical Equipment	NA								
2G2 SF6 and PFCs from Other Product Uses	NA,NO	NA							
2G3 N2O from Product Uses									
2G4 Other (Please specify)	NO								
2H Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)									

Years: 1999 – 2008 (1 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total National Emissions and Removals	NA, NO	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90
2 INDUSTRIAL PROCESSES AND PRODUCT USE	NA, NO	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90
2A Mineral Industry										
2A1 Cement production										
2A2 Lime production										
2A3 Glass Production										
2A4 Other Process Uses of Carbonates										
2A5 Other (please specify)										
2B Chemical Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B1 Ammonia Production										
2B2 Nitric Acid Production										
2B3 Adipic Acid Production										
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production										
2B5 Carbide Production										
2B6 Titanium Dioxide Production										
2B7 Soda Ash Production										
2B8 Petrochemical and Carbon Black Production										
2B9 Fluorochemical Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10 Other (Please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C Metal Industry	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C1 Iron and Steel Production										
2C2 Ferroalloys Production										
2C3 Aluminium production										
2C4 Magnesium production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5 Lead Production										
2C6 Zinc Production										
2C7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Years: 1999 – 2008 (2 of 2)

Categories	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
2D Non-Energy Products from Fuels and Solvent Use										
2D1 Lubricant Use										
2D2 Paraffin Wax Use										
2D3 Solvent Use										
2D4 Other (please specify)										
2E Electronics Industry	NA, NO	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90
2E1 Integrated Circuit or Semiconductor	NO	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90	45.90
2E2 TFT Flat Panel Display	NO									
2E3 Photovoltaics	NO	NA								
2E4 Heat Transfer Fluid	NO									
2E5 Other (please specify)	NO									
2F Product Uses as Substitutes for Ozone Depleting	NIA NIO	NA,NO	NA NO							
Substances	INA,INO	INA,INO	IVA,IVO	INA,INO	INA,INO	IVA,IVO	INA,INO	INA,INO	INA,INO	INA,INO
2F1 Refrigeration and Air Conditioning	NA									
2F2 Foam Blowing Agents	NA									
2F3 Fire Protection	NA									
2F4 Aerosols	NA									
2F5 Solvents	NA									
2F6 Other Applications	NO									
2G Other Product Manufacture and Use	NA,NO									
2G1 Electrical Equipment	NA									
2G2 SF6 and PFCs from Other Product Uses	NA									
2G3 N2O from Product Uses										
2G4 Other (Please specify)	NO									
2H Other										
2H1 Pulp and Paper Industry										
2H2 Food and Beverages Industry										
2H3 Other (please specify)										

Years: 2009 – 2019 (1 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Total National Emissions and Removals	45.90	45.90	45.90	45.29	47.03	45.36	45.36	50.85	50.85	50.85	50.85
2 INDUSTRIAL PROCESSES AND PRODUCT USE	45.90	45.90	45.90	45.29	47.03	45.36	45.36	50.85	50.85	50.85	50.85
2A Mineral Industry											
2A1 Cement production											
2A2 Lime production											
2A3 Glass Production											
2A4 Other Process Uses of Carbonates											
2A5 Other (please specify)											
2B Chemical Industry	NO										
2B1 Ammonia Production											
2B2 Nitric Acid Production											
2B3 Adipic Acid Production											
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production											
2B5 Carbide Production											
2B6 Titanium Dioxide Production											
2B7 Soda Ash Production											
2B8 Petrochemical and Carbon Black Production											
2B9 Fluorochemical Production	NO										
2B10 Other (Please specify)	NO										
2C Metal Industry	NO										
2C1 Iron and Steel Production											
2C2 Ferroalloys Production											
2C3 Aluminium production											
2C4 Magnesium production	NO										
2C5 Lead Production											
2C6 Zinc Production											
2C7 Other (please specify)	NO										

Years: 2009 - 2019 (2 of 2)

Categories	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
2D Non-Energy Products from Fuels and Solvent Use											
2D1 Lubricant Use											
2D2 Paraffin Wax Use											
2D3 Solvent Use											
2D4 Other (please specify)											
2E Electronics Industry	45.90	45.90	45.90	45.29	47.03	45.36	45.36	50.85	50.85	50.85	50.85
2E1 Integrated Circuit or Semiconductor	45.90	45.90	45.90	45.29	47.03	45.36	45.36	50.85	50.85	50.85	50.85
2E2 TFT Flat Panel Display	NO										
2E3 Photovoltaics	NA										
2E4 Heat Transfer Fluid	NO										
2E5 Other (please specify)	NO										
2F Product Uses as Substitutes for Ozone Depleting	NIA NIO	NIA NIO	NIA NIO	NIA NIO	NA NO	NIA NIO	NIA NIO	NIA NIO	NA,NO	NA NO	NIA NIO
Substances	INA,INO										
2F1 Refrigeration and Air Conditioning	NA										
2F2 Foam Blowing Agents	NA										
2F3 Fire Protection	NA										
2F4 Aerosols	NA										
2F5 Solvents	NA										
2F6 Other Applications	NO										
2G Other Product Manufacture and Use	NA,NO										
2G1 Electrical Equipment	NA										
2G2 SF6 and PFCs from Other Product Uses	NA										
2G3 N2O from Product Uses											
2G4 Other (Please specify)	NO										
2H Other											
2H1 Pulp and Paper Industry											
2H2 Food and Beverages Industry											
2H3 Other (please specify)											

Table A - 25a: Approach 1 Level Assessment for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Year 2019 (1 of 4)

	IDOO				Level	
	IPCC	17000	Greenhouse	2019 Year Estimate	Level	a
Sector	Category	IPCC Category Name	Gas	(Gg CO ₂ Eq)	Assessment	Cumulative (%)
▼	Code -		▼	· ·	(%) →↓	▼
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CO2	73,653.01	22.29%	22.29%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CO2	53,995.92	16.34%	38.64%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CO2	33,811.76	10.23%	48.87%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CO2	18,087.71	5.48%	54.35%
WASTE	4.D.2	Industrial Wastewater Treatment and Discharge	CH4	14,462.46	4.38%	58.73%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CO2	13,724.22	4.15%	62.88%
WASTE	4.A	Solid Waste Disposal	CH4	11,681.20	3.54%	66.42%
ENERGY	1.B.2.a	Oil	CH4	10,750.91	3.25%	69.67%
IPPU	2.A.1	Cement production	CO2	9,120.65	2.76%	72.43%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CO2	8,535.30	2.58%	75.02%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CO2	8,200.82	2.48%	77.50%
IPPU	2.C.1	Iron and Steel Production	CO2	7,543.24	2.28%	79.78%
ENERGY	1.B.2.b	Natural Gas	CH4	7,091.00	2.15%	81.93%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CO2	6,859.53	2.08%	84.01%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CO2	5,650.38	1.71%	85.72%
ENERGY	1.B.2.a	Oil	CO2	4,335.70	1.31%	87.03%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CO2	4,170.48	1.26%	88.29%
AFOLU-Agriculture	3.C.4	Direct N2O Emissions from managed soils	N2O	3,736.73	1.13%	89.42%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CO2	2,686.54	0.81%	90.23%
ENERGY	1.A.3.e	Other tranportation	CO2	2,377.14	0.72%	90.95%
AFOLU-Agriculture	3.C.7	Rice cultivation	CH4	2,268.98	0.69%	91.64%
IPPU	2.C.3	Aluminium production	PFC-14	2,246.56	0.68%	92.32%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CO2	1,884.53	0.57%	92.89%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	CH4	1,687.08	0.51%	93.40%
IPPU	2C2	Ferroalloys Production	CO2	1,680.43	0.51%	93.91%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CO2	1,647.73	0.50%	94.41%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CO2	1,646.37	0.50%	94.91%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CO2	1,276.23	0.39%	95.29%

Year 2019 (2 of 4)

Sector	IPCC Category Code ▼	IPCC Category Name	Greenhouse Gas	2019 Year Estimate (Gg CO ₂ Eq)	Level Assessment (%)	Cumulative (%)
AFOLU-Agriculture	3.A.1	Enteric Fermentation	CH4	1,224.46	0.37%	95.66%
IPPU	2.B.1	Ammonia Production	CO2	1,224.16	0.37%	96.04%
IPPU	2.C.3	Aluminium production	CO2	1,216.00	0.37%	96.40%
AFOLU-Agriculture	3.C.5	Indirect N2O Emissions from managed soils	N2O	1,053.28	0.32%	96.72%
IPPU	2.F.1.b	Refrigeration and Air Conditioning - Mobile Air Conditioning	HFC-134a	929.77	0.28%	97.00%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-116	901.69	0.27%	97.28%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-14	875.15	0.26%	97.54%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	N2O	775.24	0.23%	97.78%
AFOLU-Agriculture	3.C.6	Indirect N2O Emissions from manure management	N2O	541.90	0.16%	97.94%
AFOLU-Agriculture	3.A.2	Manure Management	CH4	539.49	0.16%	98.10%
IPPU	2.A.4	Other Process Uses of Carbonates - Limestone and Dolomite	CO2	494.90	0.15%	98.25%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-14	491.57	0.15%	98.40%
ENERGY	1.A.5	Non-Specified - Liquid Fuels	CO2	487.76	0.15%	98.55%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CH4	465.40	0.14%	98.69%
AFOLU-Agriculture	3.C.3	Urea application	CO2	389.89	0.12%	98.81%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	N2O	378.14	0.11%	98.92%
IPPU	2.C.3	Aluminium production	PFC-116	370.88	0.11%	99.04%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	N2O	343.98	0.10%	99.14%
IPPU	2.A.3	Glass Production	CO2	340.52	0.10%	99.24%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	SF6	337.03	0.10%	99.34%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CH4	327.77	0.10%	99.44%
ENERGY	1.B.2.b	Natural Gas	CO2	264.54	0.08%	99.52%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CO2	230.03	0.07%	99.59%
IPPU	2.G.1	Other Product Manufacture and Use - Electrical Equipment	SF6	146.74	0.04%	99.64%
IPPU	2.A.2	Lime production	CO2	128.96	0.04%	99.68%
AFOLU-Agriculture	3.A.2	Manure Management	N2O	120.61	0.04%	99.71%
IPPU	2.G.3.b	Other Product Manufacture and Use - N2O in Medical Applications	N2O	60.07	0.02%	99.73%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-116	57.79	0.02%	99.75%

Year 2019 (3 of 4)

Sector	IPCC Category Code ▼	IPCC Category Name	Greenhouse Gas	2019 Year Estimate (Gg CO ₂ Eq)	Level Assessment (%)	Cumulative (%)
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CO2	53.99	0.02%	99.77%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	NF3	50.85	0.02%	99.78%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CO2	46.69	0.01%	99.80%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	N2O	45.45	0.01%	99.81%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	HFC-23	43.75	0.01%	99.82%
WASTE	4.C.1	Waste Incineration	CO2	42.09	0.01%	99.84%
IPPU	2.B.5	Carbide Production	CO2	38.02	0.01%	99.85%
ENERGY	1.A.3.e	Other tranportation	N2O	32.71	0.01%	99.86%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-218	32.63	0.01%	99.87%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	N2O	31.91	0.01%	99.88%
ENERGY	1.A.3.e	Other tranportation	CH4	28.30	0.01%	99.88%
ENERGY	1.B.1	Solid	CH4	23.75	0.01%	99.89%
AFOLU-Agriculture	3.C.2	Liming	CO2	21.67	0.01%	99.90%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	N2O	20.00	0.01%	99.90%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	N2O	19.84	0.01%	99.91%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CH4	19.24	0.01%	99.92%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	CH4	18.52	0.01%	99.92%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	N2O	17.96	0.01%	99.93%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CH4	17.84	0.01%	99.93%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CH4	15.07	0.00%	99.94%
ENERGY	1.B.2.a	Oil	N2O	14.85	0.00%	99.94%
IPPU	2C2	Ferroalloys Production	CH4	13.94	0.00%	99.95%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CH4	13.34	0.00%	99.95%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	N2O	10.64	0.00%	99.95%
ENERGY	1.A.1.a	Electricity Generation - Biomass	N2O	10.32	0.00%	99.96%
IPPU	2.C.1	Iron and Steel Production	CH4	10.26	0.00%	99.96%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	N2O	9.61	0.00%	99.96%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CH4	9.43	0.00%	99.97%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CH4	9.10	0.00%	99.97%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CH4	8.39	0.00%	99.97%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CH4	8.39	0.00%	99.97%

Year 2019 (4 of 4)

	IPCC		Greenhouse	2019 Year Estimate	Level	
Sector	Category	IPCC Category Name	Gas _	(Gg CO ₂ Eq)	Assessment	Cumulative (%)
▼	Code	v	Gas	(Gg CO ₂ Eq)	(%) ↓↓	_
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CH4	8.06	0.00%	99.98%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	N2O	7.29	0.00%	99.98%
ENERGY	1.A.1.a	Electricity Generation - Biomass	CH4	6.52	0.00%	99.98%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	N2O	6.51	0.00%	99.98%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	N2O	6.18	0.00%	99.98%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CH4	6.12	0.00%	99.99%
ENERGY	1.A.3.c	Railways - Liquid Fuels	N2O	5.37	0.00%	99.99%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CH4	4.93	0.00%	99.99%
ENERGY	1.A.3.b	Road Transportation - Biomass	N2O	4.85	0.00%	99.99%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	N2O	4.54	0.00%	99.99%
ENERGY	1.A.7	Non-Specified - Liquid Fuels	N2O	4.48	0.00%	99.99%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	N2O	3.67	0.00%	99.99%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CH4	3.30	0.00%	99.99%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	N2O	3.12	0.00%	100.00%
WASTE	4.C.1	Waste Incineration	N2O	2.42	0.00%	100.00%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CO2	2.35	0.00%	100.00%
ENERGY	1.A.3.b	Road Transportation - Biomass	CH4	2.03	0.00%	100.00%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CH4	1.90	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CH4	1.88	0.00%	100.00%
ENERGY	1.B.2.b	Natural Gas	N2O	0.87	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Liquid Fuels	N2O	0.83	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CO2	0.68	0.00%	100.00%
ENERGY	1.A.6	Non-Specified - Liquid Fuels	CH4	0.35	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	CH4	0.24	0.00%	100.00%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CH4	0.22	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	N2O	0.22	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	N2O	0.17	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CH4	0.12	0.00%	100.00%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CH4	0.07	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	N2O	0.03	0.00%	100.00%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CH4	0.01	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Gaseous Fuels	N2O	0.00	0.00%	100.00%
IPPU	2.B.2	Nitric Acid Production	N2O	0.00	0.00%	100.00%

Table A – 25b: Approach 1 Level Assessment for Greenhouse Gas Inventory Year 2019 - Including LULUCF Year 2019 (1 of 4)

Name	IPCC Category Code	IPCC Category Name ▼	Greenhouse Gas	2019 Year Estimate (Gg CO₂ Eq)▼	D -	Level Assessment (%)	Cumulative (%)
AFOLU-LULUCF	3.B.1	Forest land Remaining Forest land	CO2	-237,008.39	237,008.39	37.80%	37.80%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CO2	73,653.01	73,653.01	11.75%	49.55%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CO2	53,995.92	53,995.92	8.61%	58.16%
AFOLU-LULUCF	3.B.5.b	Forest land converted to settlement	CO2	35,564.03	35,564.03	5.67%	63.83%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CO2	33,811.76	33,811.76	5.39%	69.23%
AFOLU-LULUCF	3.B.2	Cropland Remaining Cropland	CO2	-18,662.58	18,662.58	2.98%	72.20%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CO2	18,087.71	18,087.71	2.88%	75.09%
WASTE	4.D.2	Industrial Wastewater Treatment and Discharge	CH4	14,462.46	14,462.46	2.31%	77.39%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CO2	13,724.22	13,724.22	2.19%	79.58%
WASTE	4.A	Solid Waste Disposal	CH4	11,681.20	11,681.20	1.86%	81.45%
ENERGY	1.B.2.a	Oil	CH4	10,750.91	10,750.91	1.71%	83.16%
IPPU	2.A.1	Cement production	CO2	9,120.65	9,120.65	1.45%	84.61%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CO2	8,535.30	8,535.30	1.36%	85.98%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CO2	8,200.82	8,200.82	1.31%	87.28%
IPPU	2.C.1	Iron and Steel Production	CO2	7,543.24	7,543.24	1.20%	88.49%
ENERGY	1.B.2.b	Natural Gas	CH4	7,091.00	7,091.00	1.13%	89.62%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CO2	6,859.53	6,859.53	1.09%	90.71%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CO2	5,650.38	5,650.38	0.90%	91.61%
AFOLU-LULUCF	3.B.5.b	Cropland converted to settlement	CO2	5,290.91	5,290.91	0.84%	92.46%
ENERGY	1.B.2.a	Oil	CO2	4,335.70	4,335.70	0.69%	93.15%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CO2	4,170.48	4,170.48	0.67%	93.81%
AFOLU-Agriculture	3.C.4	Direct N2O Emissions from managed soils	N2O	3,736.73	3,736.73	0.60%	94.41%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CO2	2,686.54	2,686.54	0.43%	94.84%
ENERGY	1.A.3.e	Other tranportation	CO2	2,377.14	2,377.14	0.38%	95.22%

Year 2019 (2 of 4)

Name V	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2019 Year Estimate (Gg CO₂ Eq)	D	Level Assessment (%)	Cumulative (%)
AFOLU-Agriculture	3.C.7	Rice cultivation	CH4	2,268.98	2,268.98	0.36%	95.58%
IPPU	2.C.3	Aluminium production	PFC-14	2,246.56	2,246.56	0.36%	95.94%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CO2	1,884.53	1,884.53	0.30%	96.24%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	CH4	1,687.08	1,687.08	0.27%	96.51%
IPPU	2C2	Ferroalloys Production	CO2	1,680.43	1,680.43	0.27%	96.78%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CO2	1,647.73	1,647.73	0.26%	97.04%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CO2	1,646.37	1,646.37	0.26%	97.30%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CO2	1,276.23	1,276.23	0.20%	97.50%
AFOLU-Agriculture	3.A.1	Enteric Fermentation	CH4	1,224.46	1,224.46	0.20%	97.70%
IPPU	2.B.1	Ammonia Production	CO2	1,224.16	1,224.16	0.20%	97.89%
IPPU	2.C.3	Aluminium production	CO2	1,216.00	1,216.00	0.19%	98.09%
AFOLU-Agriculture	3.C.5	Indirect N2O Emissions from managed soils	N2O	1,053.28	1,053.28	0.17%	98.26%
IPPU	2.F.1.b	Refrigeration and Air Conditioning - Mobile Air Conditioning	HFC-134a	929.77	929.77	0.15%	98.41%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-116	901.69	901.69	0.14%	98.55%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-14	875.15	875.15	0.14%	98.69%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	N2O	775.24	775.24	0.12%	98.81%
AFOLU-Agriculture	3.C.6	Indirect N2O Emissions from manure management	N2O	541.90	541.90	0.09%	98.90%
AFOLU-Agriculture	3.A.2	Manure Management	CH4	539.49	539.49	0.09%	98.98%
IPPU	2.A.4	Other Process Uses of Carbonates - Limestone and Dolomite	CO2	494.90	494.90	0.08%	99.06%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-14	491.57	491.57	0.08%	99.14%
ENERGY	1.A.5	Non-Specified - Liquid Fuels	CO2	487.76	487.76	0.08%	99.22%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CH4	465.40	465.40	0.07%	99.29%
AFOLU-Agriculture	3.C.3	Urea application	CO2	389.89	389.89	0.06%	99.36%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	N2O	378.14	378.14	0.06%	99.42%
IPPU	2.C.3	Aluminium production	PFC-116	370.88	370.88	0.06%	99.48%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	N2O	343.98	343.98	0.05%	99.53%
IPPU	2.A.3	Glass Production	CO2	340.52	340.52	0.05%	99.58%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	SF6	337.03	337.03	0.05%	99.64%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CH4	327.77	327.77	0.05%	99.69%
ENERGY	1.B.2.b	Natural Gas	CO2	264.54	264.54	0.04%	99.73%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CO2	230.03	230.03	0.04%	99.77%
IPPU	2.G.1	Other Product Manufacture and Use - Electrical Equipment	SF6	146.74	146.74	0.02%	99.79%
IPPU	2.A.2	Lime production	CO2	128.96	128.96	0.02%	99.81%
AFOLU-Agriculture	3.A.2	Manure Management	N2O	120.61	120.61	0.02%	99.83%
AFOLU-LULUCF	3.B.2.b	Forest land converted to Cropland	CO2	101.49	101.49	0.02%	99.85%

Year 2019 (3 of 4)

Name	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2019 Year Estimate (Gg CO₂ Eq) ▼	D	Level Assessment (%)	Cumulative (%)
IPPU	2.G.3.b	Other Product Manufacture and Use - N2O in Medical Applications	N2O	60.07	60.07	0.01%	99.86%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-116	57.79	57.79	0.01%	99.87%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CO2	53.99	53.99	0.01%	99.88%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	NF3	50.85	50.85	0.01%	99.88%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CO2	46.69	46.69	0.01%	99.89%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	N2O	45.45	45.45	0.01%	99.90%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	HFC-23	43.75	43.75	0.01%	99.91%
WASTE	4.C.1	Waste Incineration	CO2	42.09	42.09	0.01%	99.91%
IPPU	2.B.5	Carbide Production	CO2	38.02	38.02	0.01%	99.92%
ENERGY	1.A.3.e	Other tranportation	N2O	32.71	32.71	0.01%	99.92%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-218	32.63	32.63	0.01%	99.93%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	N2O	31.91	31.91	0.01%	99.93%
ENERGY	1.A.3.e	Other tranportation	CH4	28.30	28.30	0.00%	99.94%
ENERGY	1.B.1	Solid	CH4	23.75	23.75	0.00%	99.94%
AFOLU-Agriculture	3.C.2	Liming	CO2	21.67	21.67	0.00%	99.95%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	N2O	20.00	20.00	0.00%	99.95%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	N2O	19.84	19.84	0.00%	99.95%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CH4	19.24	19.24	0.00%	99.96%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	CH4	18.52	18.52	0.00%	99.96%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	N2O	17.96	17.96	0.00%	99.96%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CH4	17.84	17.84	0.00%	99.96%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CH4	15.07	15.07	0.00%	99.97%
ENERGY	1.B.2.a	Oil	N2O	14.85	14.85	0.00%	99.97%
IPPU	2C2	Ferroalloys Production	CH4	13.94	13.94	0.00%	99.97%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CH4	13.34	13.34	0.00%	99.97%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	N2O	10.64	10.64	0.00%	99.98%
ENERGY	1.A.1.a	Electricity Generation - Biomass	N2O	10.32	10.32	0.00%	99.98%
IPPU	2.C.1	Iron and Steel Production	CH4	10.26	10.26	0.00%	99.98%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	N2O	9.61	9.61	0.00%	99.98%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CH4	9.43	9.43	0.00%	99.98%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CH4	9.10	9.10	0.00%	99.98%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CH4	8.39	8.39	0.00%	99.98%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CH4	8.39	8.39	0.00%	99.99%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CH4	8.06	8.06	0.00%	99.99%

Year 2019 (4 of 4)

Name -	IPCC Category Code	IPCC Category Name ▼	Greenhouse Gas	2019 Year Estimate (Gg CO₂ Eq)	[D]	Level Assessment (%)	Cumulative (%)
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	N2O	7.29	7.29	0.00%	99.99%
ENERGY	1.A.1.a	Electricity Generation - Biomass	CH4	6.52	6.52	0.00%	99.99%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	N2O	6.51	6.51	0.00%	99.99%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	N2O	6.18	6.18	0.00%	99.99%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CH4	6.12	6.12	0.00%	99.99%
ENERGY	1.A.3.c	Railways - Liquid Fuels	N2O	5.37	5.37	0.00%	99.99%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CH4	4.93	4.93	0.00%	99.99%
ENERGY	1.A.3.b	Road Transportation - Biomass	N2O	4.85	4.85	0.00%	99.99%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	N2O	4.54	4.54	0.00%	100.00%
ENERGY	1.A.7	Non-Specified - Liquid Fuels	N2O	4.48	4.48	0.00%	100.00%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	N2O	3.67	3.67	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CH4	3.30	3.30	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	N2O	3.12	3.12	0.00%	100.00%
WASTE	4.C.1	Waste Incineration	N2O	2.42	2.42	0.00%	100.00%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CO2	2.35	2.35	0.00%	100.00%
ENERGY	1.A.3.b	Road Transportation - Biomass	CH4	2.03	2.03	0.00%	100.00%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CH4	1.90	1.90	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CH4	1.88	1.88	0.00%	100.00%
ENERGY	1.B.2.b	Natural Gas	N2O	0.87	0.87	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Liquid Fuels	N2O	0.83	0.83	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CO2	0.68	0.68	0.00%	100.00%
ENERGY	1.A.6	Non-Specified - Liquid Fuels	CH4	0.35	0.35	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	CH4	0.24	0.24	0.00%	100.00%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CH4	0.22	0.22	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	N2O	0.22	0.22	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	N2O	0.17	0.17	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CH4	0.12	0.12	0.00%	100.00%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CH4	0.07	0.07	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	N2O	0.03	0.03	0.00%	100.00%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CH4	0.01	0.01	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Gaseous Fuels	N2O	0.00	0.00	0.00%	100.00%
IPPU	2.B.2	Nitric Acid Production	N2O	0.00	0.00	0.00%	100.00%

Table A - 26a: Approach 1 Trend Assessment for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Year 2019 (1 of 4)

Sector	IPCC Category Code		Greenhouse Gas	(Gg CO ₂ Eq. ▼	2019 Year (Gg CO ₂ Eα)	(TXL) ¥	Contribution to Trend (%)	(%)
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CO2	22,279.39	73,653.01	0.18	28.33%	28.33%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CO2	26,744.27	13,724.22	0.09	13.85%	42.17%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CO2	17,297.09	8,535.30	0.06	9.17%	51.35%
ENERGY	1.B.2.a	Oil	CH4	17,012.21	10,750.91	0.05	7.51%	58.86%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CO2	33,600.15	53,995.92	0.04	6.15%	65.01%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CO2	30,969.27	33,811.76	0.03	4.55%	69.56%
IPPU	2.C.1	Iron and Steel Production	CO3	1,367.98	7,543.24	0.02	3.67%	73.24%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CO2	9,936.67	8,200.82	0.02	3.16%	76.40%
WASTE	4.D.2	Industrial Wastewater Treatment and Discharge	CH4	13,833.55	14,462.46	0.02	2.44%	78.84%
WASTE	4.A	Solid Waste Disposal	CH4	6,096.11	11,681.20	0.01	2.32%	81.16%
ENERGY	1.B.2.a	Oil	CO2	5,387.14	4,335.70	0.01	1.78%	82.95%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CO2	313.42	2,686.54	0.01	1.46%	84.40%
IPPU	2.C.3	Aluminium production	PFC-14	0.00	2,246.56	0.01	1.44%	85.84%
IPPU	2C2	Ferroalloys Production	CO2	0.00	1,680.43	0.01	1.08%	86.92%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CO2	12,480.19	18,087.71	0.01	1.02%	87.94%
ENERGY	1.B.2.b	Natural Gas	CH4	6,565.43	7,091.00	0.01	1.01%	88.96%
AFOLU-Agriculture	3.C.4	Direct N2O Emissions from managed soils	N2O	3,852.49	3,736.73	0.01	0.87%	89.82%
IPPU	2.C.3	Aluminium production	CO2	0.00	1,216.00	0.00	0.78%	90.60%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CO2	2,156.27	1,646.37	0.00	0.77%	91.37%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CO2	2,085.98	1,647.73	0.00	0.71%	92.08%
IPPU	2.A.1	Cement production	CO2	7,615.98	9,120.65	0.00	0.60%	92.69%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-116	0.00	901.69	0.00	0.58%	93.26%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-14	0.00	875.15	0.00	0.56%	93.83%
AFOLU-Agriculture	3.A.1	Enteric Fermentation	CH4	1,452.12	1,224.46	0.00	0.44%	94.27%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CO2	2,633.90	4,170.48	0.00	0.44%	94.71%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	CH4	1,731.03	1,687.08	0.00	0.38%	95.10%

392

Year 2019 (2 of 4)

	IPCC		Greenhouse	2005 Base	2019 Year	Trend	Contribution	Cumulativa
Sector	Category	IPCC Category Name	Gas _	Year Estimate	(Gg CO ₂ Eq)	Assessment	to Trend (%)	
▼	Code -	▼	Gas	✓ (Gg CO ₂ Eq) ✓	(Gg CO ₂ Eur	(Txt)	to Helid (%)	(%)
AFOLU-Agriculture	3.C.7	Rice cultivation	CH4	2,118.20	2,268.98	0.00	0.34%	95.44%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CO2	1,820.67	1,884.53	0.00	0.33%	95.77%
ENERGY	1.A.3.e	Other tranportation	CO2	1,409.64	2,377.14	0.00	0.33%	96.10%
AFOLU-Agriculture	3.C.5	Indirect N2O Emissions from managed soils	N2O	1,185.79	1,053.28	0.00	0.33%	96.43%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CO2	3,947.29	5,650.38	0.00	0.28%	96.71%
IPPU	2.C.3	Aluminium production	PFC-116	0.00	370.88	0.00	0.24%	96.94%
AFOLU-Agriculture	3.C.3	Urea application	CO2	575.07	389.89	0.00	0.24%	97.18%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-14	639.71	491.57	0.00	0.23%	97.41%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CO2	1,202.61	1,276.23	0.00	0.20%	97.61%
IPPU	2.A.3	Glass Production	CO2	28.34	340.52	0.00	0.19%	97.80%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CO2	5,420.07	6,859.53	0.00	0.19%	98.00%
IPPU	2.F.1.b	Refrigeration and Air Conditioning - Mobile Air Conditioning	HFC-134a	479.34	929.77	0.00	0.19%	98.19%
IPPU	2.B.2	Nitric Acid Production	N2O	217.09	0.00	0.00	0.18%	98.37%
IPPU	2.A.4	Other Process Uses of Carbonates - Limestone and Dolomite	CO2	178.68	494.90	0.00	0.17%	98.54%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	N2O	103.63	343.98	0.00	0.13%	98.67%
ENERGY	1.B.2.b	Natural Gas	CO2	58.49	264.54	0.00	0.12%	98.79%
IPPU	2.A.2	Lime production	CO2	239.24	128.96	0.00	0.12%	98.91%
ENERGY	1.A.5	Non-Specified - Liquid Fuels	CO2	240.69	487.76	0.00	0.11%	99.02%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CO2	158.12	46.69	0.00	0.10%	99.12%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	N2O	484.51	775.24	0.00	0.09%	99.21%
AFOLU-Agriculture	3.A.2	Manure Management	CH4	506.79	539.49	0.00	0.08%	99.29%
IPPU	2.G.1	Other Product Manufacture and Use - Electrical Equipment	SF6	14.82	146.74	0.00	0.08%	99.37%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CH4	278.06	465.40	0.00	0.06%	99.44%
IPPU	2.B.1	Ammonia Production	CO2	988.52	1,224.16	0.00	0.05%	99.49%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	SF6	304.20	337.03	0.00	0.04%	99.53%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CO2	222.99	230.03	0.00	0.04%	99.57%
AFOLU-Agriculture	3.C.6	Indirect N2O Emissions from manure management	N2O	456.57	541.90	0.00	0.04%	99.61%
IPPU	2.B.8	Petrochemical and Carbon Black Production	CH4	202.86	327.77	0.00	0.04%	99.65%
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-116	0.00	57.79	0.00	0.04%	99.69%
IPPU	2.C.1	Iron and Steel Production	CH4	33.73	10.26	0.00	0.02%	99.71%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	N2O	40.06	19.84	0.00	0.02%	99.73%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-218	0.00	32.63	0.00	0.02%	99.75%
IPPU	2.G.3.b	Other Product Manufacture and Use - N2O in Medical Applications	N2O	22.35	60.07	0.00	0.02%	99.77%
IPPU	2.B.5	Carbide Production	CO2	49.49	38.02	0.00	0.02%	99.79%
ENERGY	1.A.1.a	Electricity Generation - Biomass	N2O	27.71	10.32	0.00	0.02%	99.80%
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	N2O	305.57	378.14	0.00	0.02%	99.82%

260

Year 2019 (3 of 4)

Sector	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO₂ Eq)▼	2019 Year (Gg CO ₂ Eα)	Trend Assessment (Txt)	Contribution to Trend (%)	(%)
AFOLU-Agriculture	3.C.2	Liming	CO2	0.00	21.67	0.00	0.01%	99.83%
ENERGY	1.A.3.c	Railways - Liquid Fuels	N2O	18.19	5.37	0.00	0.01%	99.85%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CO2	53.99	53.99	0.00	0.01%	99.86%
ENERGY	1.A.1.a	Electricity Generation - Biomass	CH4	17.43	6.52	0.00	0.01%	99.87%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CH4	16.92	8.39	0.00	0.01%	99.88%
IPPU	2C2	Ferroalloys Production	CH4	0.00	13.94	0.00	0.01%	99.88%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CO2	11.74	2.35	0.00	0.01%	99.89%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	N2O	24.24	20.00	0.00	0.01%	99.90%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CH4	5.80	19.24	0.00	0.01%	99.91%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	N2O	14.21	7.29	0.00	0.01%	99.92%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	NF3	45.90	50.85	0.00	0.01%	99.92%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CH4	11.92	6.12	0.00	0.01%	99.93%
ENERGY	1.B.2.a	Oil	N2O	18.45	14.85	0.00	0.01%	99.93%
ENERGY	1.B.1	Solid	CH4	24.73	23.75	0.00	0.01%	99.94%
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	HFC-23	39.49	43.75	0.00	0.01%	99.95%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CH4	1.06	9.10	0.00	0.00%	99.95%
AFOLU-Agriculture	3.A.2	Manure Management	N2O	96.78	120.61	0.00	0.00%	99.96%
ENERGY	1.A.3.e	Other tranportation	N2O	19.40	32.71	0.00	0.00%	99.96%
ENERGY	1.A.3.e	Other tranportation	CH4	16.78	28.30	0.00	0.00%	99.96%
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	N2O	0.76	6.51	0.00	0.00%	99.97%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CH4	10.17	8.39	0.00	0.00%	99.97%
ENERGY	1.A.3.b	Road Transportation - Biomass	N2O	0.00	4.85	0.00	0.00%	99.97%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	N2O	16.45	17.96	0.00	0.00%	99.98%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	N2O	31.74	45.45	0.00	0.00%	99.98%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CH4	13.80	15.07	0.00	0.00%	99.98%
WASTE	4.C.1	Waste Incineration	CO2	29.61	42.09	0.00	0.00%	99.98%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CH4	9.14	9.43	0.00	0.00%	99.98%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	N2O	10.02	10.64	0.00	0.00%	99.99%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	CH4	15.94	18.52	0.00	0.00%	99.99%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CH4	4.36	3.30	0.00	0.00%	99.99%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CH4	5.36	4.93	0.00	0.00%	99.99%
ENERGY	1.A.3.b	Road Transportation - Biomass	CH4	0.00	2.03	0.00	0.00%	99.99%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	N2O	25.21	31.91	0.00	0.00%	99.99%

Year 2019 (4 of 4)

Sector	IPCC Category Code ▼	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO₂ Eq <mark>]</mark> ▼	2019 Year (Gg CO ₂ Eq)	Trend Assessment (Txt)	Contribution to Trend (%)	(%)
ENERGY	1.A.7	Non-Specified - Liquid Fuels	N2O	2.34	4.48	0.00	0.00%	99.99%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	N2O	4.30	4.54	0.00	0.00%	99.99%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CH4	9.32	13.34	0.00	0.00%	99.99%
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	N2O	3.55	3.67	0.00	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CH4	2.11	1.88	0.00	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Liquid Fuels	N2O	1.29	0.83	0.00	0.00%	100.00%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	N2O	6.63	9.61	0.00	0.00%	100.00%
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	N2O	5.29	6.18	0.00	0.00%	100.00%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CH4	14.10	17.84	0.00	0.00%	100.00%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CH4	5.56	8.06	0.00	0.00%	100.00%
ENERGY	1.B.2.b	Natural Gas	N2O	0.16	0.87	0.00	0.00%	100.00%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CH4	1.80	1.90	0.00	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	N2O	2.61	3.12	0.00	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	CO2	0.77	0.68	0.00	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	CH4	0.01	0.24	0.00	0.00%	100.00%
ENERGY	1.A.3.c	Railways - Liquid Fuels	CH4	0.22	0.07	0.00	0.00%	100.00%
WASTE	4.B	Biological Treatment of Solid Waste	N2O	0.01	0.17	0.00	0.00%	100.00%
WASTE	4.C.1	Waste Incineration	N2O	1.74	2.42	0.00	0.00%	100.00%
WASTE	4.C.2	Open Burning of Waste	N2O	0.25	0.22	0.00	0.00%	100.00%
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CH4	0.21	0.22	0.00	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CH4	0.12	0.12	0.00	0.00%	100.00%
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CH4	0.03	0.01	0.00	0.00%	100.00%
ENERGY	1.A.6	Non-Specified - Liquid Fuels	CH4	0.27	0.35	0.00	0.00%	100.00%
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	N2O	0.03	0.03	0.00	0.00%	100.00%
ENERGY	1.A.4.b	Residential - Gaseous Fuels	N2O	0.01	0.00	0.00	0.00%	100.00%

Table A – 26b: Approach 1 Trend Assessment for Greenhouse Gas Inventory Year 2019 - Including LULUCF 2019 (1 of 4)

Sector	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO ₂ Eq)	2019 Year (Gg CO₂ Eq)	Trend Assessment (Txt)	Contribution to Trend (%)	Cumulative (%)
AFOLU-LULUCF	3.B.1	Forest land Remaining Forest land	CO2	-215,490.65	-237,008.39	0.53	43.30%	43.30%
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CO2	26,744.27	13,724.22	0.09	6.99%	50.29%
AFOLU-LULUCF	3.B.5.b	Forest land converted to settlement	CO2	36,437.78	35,564.03	0.08	6.89%	57.18%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CO2	30,969.27	33,811.76	0.06	5.29%	62.48%
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CO2	17,297.09	8,535.30	0.06	4.58%	67.05%
ENERGY	1.B.2.a	Oil	CH4	17,012.21	10,750.91	0.05	4.13%	71.19%
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CO2	22,279.39	73,653.01	0.05	3.92%	75.10%
AFOLU-LULUCF	3.B.2	Cropland Remaining Cropland	CO2	-20,215.98	-18,662.58	0.04	3.50%	78.61%
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CO2	33,600.15	53,995.92	0.04	3.03%	81.64%
WASTE	4.D.2	Industrial Wastewater Treatment and Discharge	CH4	13,833.55	14,462.46	0.03	2.46%	84.10%
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CO2	9,936.67	8,200.82	0.03	2.11%	86.22%
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CO2	12,480.19	18,087.71	0.02	1.43%	87.65%
IPPU	2.A.1	Cement production	CO2	7,615.98	9,120.65	0.01	1.18%	88.83%
ENERGY	1.B.2.a	Oil	CO2	5,387.14	4,335.70	0.01	1.16%	89.99%
ENERGY	1.B.2.b	Natural Gas	CH4	6,565.43	7,091.00	0.01	1.13%	91.12%
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CO2	5,420.07	6,859.53	0.01	0.78%	91.90%
AFOLU-Agriculture	3.C.4	Direct N2O Emissions from managed soils	N2O	3,852.49	3,736.73	0.01	0.73%	92.63%
IPPU	2.C.1	Iron and Steel Production	CO2	1,367.98	7,543.24	0.01	0.71%	93.35%
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CO2	2,156.27	1,646.37	0.01	0.48%	93.83%
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CO2	3,947.29	5,650.38	0.01	0.46%	94.29%
ENERGY	1.A.4.b	Residential - Liquid Fuels	CO2	2,085.98	1,647.73	0.01	0.46%	94.75%
AFOLU-Agriculture	3.C.7	Rice cultivation	CH4	2,118.20	2,268.98	0.00	0.37%	95.12%
IPPU	2.C.3	Aluminium production	PFC-14	0.00	2,246.56	0.00	0.35%	0.95
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	CH4	1,731.03	1,687.08	0.00	0.33%	0.96
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CO2	1,820.67	1,884.53	0.00	0.33%	0.96
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CO2	313.42	2,686.54	0.00	0.31%	0.96
AFOLU-Agriculture	3.A.1	Enteric Fermentation	CH4	1,452.12	1,224.46	0.00	0.30%	0.97

2019 (2 of 4)

Sector	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO ₂ Eq)	2019 Year (Gg CO ₂ Eq)	Trend Assessment (Txt)	Contribution to Trend (%)	Cumulative (%)
IPPU	2C2	Ferroalloys Production	CO2	0.00	1,680.43	0.00	0.26%	0.97
WASTE	4.A	Solid Waste Disposal	CH4	6.096.11	11,681.20	0.00	0.26%	0.97
IPPU	2.B.8	Petrochemical and Carbon Black Production	CO2	2,633.90	4,170.48	0.00	0.25%	0.98
AFOLU-Agriculture	3.C.5	Indirect N2O Emissions from managed soils	N2O	1,185.79	1,053.28	0.00	0.24%	0.98
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CO2	1,202.61	1,276.23	0.00	0.21%	0.98
IPPU	2.C.3	Aluminium production	CO2	0.00	1,216.00	0.00	0.19%	0.98
IPPU	2.B.1	Ammonia Production	CO2	988.52	1,224.16	0.00	0.15%	0.98
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-14	639.71	491.57	0.00	0.14%	0.98
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-116	0.00	901.69	0.00	0.14%	0.99
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-14	0.00	875.15	0.00	0.14%	0.99
AFOLU-Agriculture	3.C.3	Urea application	CO2	575.07	389.89	0.00	0.14%	0.99
ENERGY	1.A.3.e	Other tranportation	CO2	1,409.64	2,377.14	0.00	0.11%	0.99
AFOLU-Agriculture	3.A.2	Manure Management	CH4	506.79	539.49	0.00	0.09%	0.99
AFOLU-LULUCF	3.B.5.b	Cropland converted to settlement	CO2	2,192.08	5,290.91	0.00	0.08%	0.99
IPPU	2.B.2	Nitric Acid Production	N2O	217.09	0.00	0.00	0.07%	0.99
AFOLU-Agriculture	3.C.6	Indirect N2O Emissions from manure management	N2O	456.57	541.90	0.00	0.07%	0.99
IPPU	2.A.2	Lime production	CO2	239.24	128.96	0.00	0.06%	0.99
IPPU	2.C.3	Aluminium production	PFC-116	0.00	370.88	0.00	0.06%	0.99
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	SF6	304.20	337.03	0.00	0.05%	0.99
ENERGY	1.A.3.c	Railways - Liquid Fuels	CO2	158.12	46.69	0.00	0.05%	0.99
WASTE	4.D.1	Domestic Wastewater Treatment and Discharge	N2O	305.57	378.14	0.00	0.05%	1.00
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	N2O	484.51	775.24	0.00	0.04%	1.00
IPPU	2.A.3	Glass Production	CO2	28.34	340.52	0.00	0.04%	1.00
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CO2	222.99	230.03	0.00	0.04%	1.00
ENERGY	1.A.3.b	Road Transportation - Liquid Fuels	CH4	278.06	465.40	0.00	0.02%	1.00
ENERGY	1.B.2.b	Natural Gas	CO2	58.49	264.54	0.00	0.02%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	N2O	103.63	343.98	0.00	0.02%	1.00
IPPU	2.F.1.b	Refrigeration and Air Conditioning - Mobile Air Conditioning	HFC-134a	479.34	929.77	0.00	0.02%	1.00
IPPU	2.B.8	Petrochemical and Carbon Black Production	CH4	202.86	327.77	0.00	0.02%	1.00
IPPU	2.G.1	Other Product Manufacture and Use - Electrical Equipment	SF6	14.82	146.74	0.00	0.02%	1.00
IPPU	2.A.4	Other Process Uses of Carbonates - Limestone and Dolomite	CO2	178.68	494.90	0.00	0.02%	1.00
AFOLU-LULUCF	3.B.2.b	Forest land converted to Cropland	CO2	0.00	101.49	0.00	0.02%	1.00

26,

2019 (3 of 4)

Sector	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO ₂ Eq)	2019 Year (Gg CO₂ Eq)	Trend Assessment (Txt)	Contribution to Trend (%)	Cumulative (%)
AFOLU-Agriculture	3.A.2	Manure Management	N2O	96.78	120.61	0.00	0.01%	1.00
IPPU	2.B.5	Carbide Production	CO2	49.49	38.02	0.00	0.01%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	N2O	40.06	19.84	0.00	0.01%	1.00
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CO2	53.99	53.99	0.00	0.01%	1.00
IPPU	2.C.1	Iron and Steel Production	CH4	33.73	10.26	0.00	0.01%	1.00
IPPU	2.E.3	Electronic Industry - Photovoltaics	PFC-116	0.00	57.79	0.00	0.01%	1.00
ENERGY	1.A.1.a	Electricity Generation - Biomass	N2O	27.71	10.32	0.00	0.01%	1.00
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	NF3	45.90	50.85	0.00	0.01%	1.00
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	HFC-23	39.49	43.75	0.00	0.01%	1.00
ENERGY	1.A.5	Non-Specified - Liquid Fuels	CO2	240.69	487.76	0.00	0.01%	1.00
ENERGY	1.A.3.c	Railways - Liquid Fuels	N2O	18.19	5.37	0.00	0.01%	1.00
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	N2O	24.24	20.00	0.00	0.01%	1.00
IPPU	2.E.1	Electronic Industry - Integrated Circuit or Semiconductor	PFC-218	0.00	32.63	0.00	0.01%	1.00
ENERGY	1.A.1.a	Electricity Generation - Biomass	CH4	17.43	6.52	0.00	0.00%	1.00
ENERGY	1.B.1	Solid	CH4	24.73	23.75	0.00	0.00%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Liquid Fuels	CH4	16.92	8.39	0.00	0.00%	1.00
ENERGY	1.B.2.a	Oil	N2O	18.45	14.85	0.00	0.00%	1.00
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	N2O	31.74	45.45	0.00	0.00%	1.00
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	N2O	14.21	7.29	0.00	0.00%	1.00
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CO2	11.74	2.35	0.00	0.00%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	N2O	25.21	31.91	0.00	0.00%	1.00
WASTE	4.C.1	Waste Incineration	CO2	29.61	42.09	0.00	0.00%	1.00
AFOLU-Agriculture	3.C.2	Liming	CO2	0.00	21.67	0.00	0.00%	1.00
ENERGY	1.A.1.c	Manufacturing of Solid Fuels and Other Energy Industries - Gaseous Fuels	CH4	11.92	6.12	0.00	0.00%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	N2O	16.45	17.96	0.00	0.00%	1.00
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	CH4	15.94	18.52	0.00	0.00%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Gaseous Fuels	CH4	13.80	15.07	0.00	0.00%	1.00
IPPU	2C2	Ferroalloys Production	CH4	0.00	13.94	0.00	0.00%	1.00
ENERGY	1.A.1.b	Petroleum Refining - Liquid Fuels	CH4	10.17	8.39	0.00	0.00%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Solid Fuels	CH4	14.10	17.84	0.00	0.00%	1.00

2019 (4 of 4)

Sector	IPCC Category Code	IPCC Category Name	Greenhouse Gas	2005 Base Year Estimate (Gg CO ₂ Eq)	2019 Year (Gg CO₂ Eq)	Trend Assessment (Txt)	Contribution to Trend (%)	Cumulative (%)
IPPU	2.G.3.b	Other Product Manufacture and Use - N2O in Medical Applications	N2O	22.35	60.07	0.00	0.00%	1.00
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	N2O	10.02	10.64	0.00	0.00%	1.00
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	CH4	9.14	9.43	0.00	0.00%	1.00
ENERGY	1.A.3.e	Other tranportation	N2O	19.40	32.71	0.00	0.00%	1.00
ENERGY	1.A.3.e	Other tranportation	CH4	16.78	28.30	0.00	0.00%	1.00
ENERGY	1.A.3.d	Domestic Water-borne Navigation - Liquid Fuels	CH4	9.32	13.34	0.00	0.00%	1.00
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	CH4	1.06	9.10	0.00	0.00%	1.00
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	CH4	5.36	4.93	0.00	0.00%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Solid Fuels	CH4	5.80	19.24	0.00	0.00%	1.00
ENERGY	1.A.4.b	Residential - Liquid Fuels	CH4	4.36	3.30	0.00	0.00%	1.00
AFOLU-Agriculture	3.C.1	Emissions from biomass burning in croplands	N2O	5.29	6.18	0.00	0.00%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	N2O	6.63	9.61	0.00	0.00%	1.00
ENERGY	1.A.4.c	Agriculture/ Fishery/ Forestry - Liquid Fuels	N2O	0.76	6.51	0.00	0.00%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	N2O	4.30	4.54	0.00	0.00%	1.00
ENERGY	1.A.3.b	Road Transportation - Biomass	N2O	0.00	4.85	0.00	0.00%	1.00
ENERGY	1.A.3.b	Road Transportation - Gaseous Fuels	N2O	3.55	3.67	0.00	0.00%	1.00
ENERGY	1.A.2	Manufacturing Industries and Construction - Gaseous Fuels	CH4	5.56	8.06	0.00	0.00%	1.00
WASTE	4.C.2	Open Burning of Waste	CH4	2.11	1.88	0.00	0.00%	1.00
ENERGY	1.A.4.a	Commercial/Institutional - Liquid Fuels	N2O	2.61	3.12	0.00	0.00%	1.00
ENERGY	1.A.1.a	Main Activity Electricity and Heat Production - Liquid Fuels	CH4	1.80	1.90	0.00	0.00%	1.00
ENERGY	1.A.3.b	Road Transportation - Biomass	CH4	0.00	2.03	0.00	0.00%	1.00
ENERGY	1.A.4.b	Residential - Liquid Fuels	N2O	1.29	0.83	0.00	0.00%	1.00
WASTE	4.C.1	Waste Incineration	N2O	1.74	2.42	0.00	0.00%	1.00
WASTE	4.C.2	Open Burning of Waste	CO2	0.77	0.68	0.00	0.00%	1.00
ENERGY	1.A.7	Non-Specified - Liquid Fuels	N2O	2.34	4.48	0.00	0.00%	1.00
ENERGY	1.B.2.b	Natural Gas	N2O	0.16	0.87	0.00	0.00%	1.00
ENERGY	1.A.3.c	Railways - Liquid Fuels	CH4	0.22	0.07	0.00	0.00%	1.00
WASTE	4.C.2	Open Burning of Waste	N2O	0.25	0.22	0.00	0.00%	1.00
ENERGY	1.A.6	Non-Specified - Liquid Fuels	CH4	0.27	0.35	0.00	0.00%	1.00
ENERGY	1.A.3.a	Domestic Aviation - Liquid Fuels	CH4	0.21	0.22	0.00	0.00%	1.00
WASTE	4.B	Biological Treatment of Solid Waste	CH4	0.01	0.24	0.00	0.00%	1.00
WASTE	4.B	Biological Treatment of Solid Waste	N2O	0.01	0.17	0.00	0.00%	1.00
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	CH4	0.12	0.12	0.00	0.00%	1.00
ENERGY	1.A.4.b	Residential -Gaseous Fuels	CH4	0.03	0.01	0.00	0.00%	1.00
ENERGY	1.A.4.a	Commercial/Institutional - Gaseous Fuels	N2O	0.03	0.03	0.00	0.00%	1.00
ENERGY	1.A.4.b	Residential - Gaseous Fuels	N2O	0.01	0.00	0.00	0.00%	1.00

Table A - 27a: Approach 1 Uncertainty Analysis for Greenhouse Gas Inventory Year 2019 - Excluding LULUCF Year 2019 (1 of 5)

Sector	IPC	C category	Gas	nb 6 Rase year (2005) Base year (2005) D emissions or removals (t)	edensing Sear t (2019) emissions Sear t (2019) emissions or removals (table table)	% Activity data uncertainty	Emission factor % uncertainty / estimation parameter uncertainty	% Combined uncertainty	Contribution to variance by source/sink category in year t	% Type A sensitivity	% Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
ENERGY	1A Fuel Combustion A	Activities												
	1A1 Energy Industries)												
			CO ₂	1,820.67	1,884.53	0.01	0.01	0.01	0.00	0.00	0.01	0.00%	0.01%	0.00%
		Liquids	CH₄	1.80	1.90	0.01	2.26	2.26	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	4.30	4.54	0.01	2.27	2.27	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	22,279.39	73,653.01	0.01	0.14	0.14	0.00	0.18	0.29	2.45%	0.29%	0.06%
	1A1a Main Activity	Solids	CH₄	5.80	19.24	0.01	1.38	1.38	0.00	0.00	0.00	0.01%	0.00%	0.00%
	Electricity and Heat		N ₂ O	103.63	343.98	0.01	1.62	1.62	0.00	0.00	0.00	0.13%	0.00%	0.00%
	Production		CO ₂	30,969.27	33,811.76	0.01	0.04	0.04	0.00	0.03	0.14	0.11%	0.19%	0.00%
		Gas	CH₄	13.80	15.07	0.01	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	16.45	17.96	0.01	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Biomass & Biogas	CH₄	17.43	6.52	0.01	2.00	2.00	0.00	0.00	0.00	0.01%	0.00%	0.00%
		Diomass & Diogas	N ₂ O	27.71	10.32	0.01	2.75	2.75	0.00	0.00	0.00	0.03%	0.00%	0.00%
			CO ₂	9,936.67	8,200.82	0.01	0.03	0.03	0.00	0.02	0.03	0.06%	0.05%	0.00%
	1A1b Petroleum Refinin	g Liquids	CH₄	10.17	8.39	0.01	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	24.24	20.00	0.01	2.33	2.33	0.00	0.00	0.00	0.01%	0.00%	0.00%
	1A1c Manufacture of		CO ₂	26,744.27	13,724.22	0.01	0.04	0.04	0.00	0.09	0.05	0.34%	0.08%	0.00%
	Solid Fuels and Other	Gas	CH₄	11.92	6.12	0.01	2.00	2.00	0.00	0.00	0.00	0.01%	0.00%	0.00%
	Energy Industries (LNG)	N ₂ O	14.21	7.29	0.01	2.00	2.00	0.00	0.00	0.00	0.01%	0.00%	0.00%

Year 2019 (2 of 5)

Sector	IP	CC category	Gas	nd See year (2005) Arie Genissions or removals (t) %	be of the control of	% Activity data uncertainty	Emission factor % uncertainty / estimation parameter uncertainty	% Combined uncertainty	Contribution to variance by source/sink category in year t	% Type A sensitivity	% Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced s into the trend in total national emissions
ENERGY (cont.)			CO ₂	17,297.09	8,535.30	0.02	0.01	0.03	0.00	0.06	0.03	0.05%	0.12%	0.00%
		Liquids	CH ₄	16.92	8.39	0.03	0.04	0.05	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	40.06	19.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
	1A2 Manufaturing		CO ₂	5,420.07	6,859.53	0.02	1.90	1.90	0.00	0.00	0.03	0.23%	0.10%	0.00%
	Industries and	Solids	CH₄	14.10	17.84	0.03	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Construction	truction	N ₂ O	25.21	31.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	12,480.19	18,087.71	0.02	1.92	1.92	0.01	0.01	0.07	1.23%	0.25%	0.02%
		Gas	CH₄	5.56	8.06	0.03	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	6.63	9.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	1,202.61	1,276.23	0.05	0.04	0.06	0.00	0.00	0.01	0.01%	0.04%	0.00%
	1A3a Civil Aviation	Liquids	CH₄	0.21	0.22	0.05	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	10.02	10.64	0.05	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	33,600.15	53,995.92	0.01	0.04	0.04	0.00	0.04	0.22	0.14%	0.23%	0.00%
		Liquids	CH₄	278.06	465.40	0.01	2.22	2.22	0.00	0.00	0.00	0.09%	0.00%	0.00%
			N ₂ O	484.51	775.24	5.76	1.73	6.01	0.00	0.00	0.00	0.09%	2.53%	0.06%
	1A3b Road		CO ₂	222.99	230.03	0.01	0.04	0.04	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Transportation	Gas	CH₄	9.14	9.43	0.01	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	3.55	3.67	0.01	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Biomass	CH₄	0.00	2.03	0.01	2.22	2.22	0.00	0.00	0.00	0.00%	0.00%	0.00%
		- 1.5.5	N ₂ O	0.00	4.85	5.76	1.73	6.01	0.00	0.00	0.00	0.00%	0.02%	0.00%
			CO ₂	158.12	46.69	0.05	0.01	0.05	0.00	0.00	0.00	0.00%	0.00%	0.00%
	1A3c Railway	Liquids	CH ₄	0.22	0.07	0.05	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	18.19	5.37	0.05	2.33	2.33	0.00	0.00	0.00	0.02%	0.00%	0.00%
	1A3d Water-Borne		CO ₂	3,947.29	5,650.38	0.05	0.01	0.05	0.00	0.00	0.02	0.00%	0.16%	0.00%
	1A3d Water-Borne Navigation Liquids	CH₄	9.32	13.34	0.05	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%	
	-		N ₂ O	31.74	45.45	0.05	2.33	2.33	0.00	0.00	0.00	0.00%	0.00%	0.00%

Year 2019 (3 of 5)

Sector	IPCC	C category	Gas	Base year (2005)	ිකි Year t (2019) emissions . Coor removals	% Activity data uncertainty	Emission factor suncertainty / estimation parameter uncertainty	% Combined uncertainty	Contribution to variance by source/sink category in year t	% Type A sensitivity	% Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced % into the trend in total national emissions
ENERGY (sent)			000	equivalent)	equivalent)	0.05	0.05	0.07	0.00	0.00	0.04	0.040/	0.070/	0.000/
ENERGY (cont.)	1A3e Off Road	Liquids	CO2 CH4	1,409.64 16.78	2,377.14 28.30	0.05	0.05 2.33	0.07 2.33	0.00	0.00	0.01	0.01% 0.01%	0.07% 0.00%	0.00%
	TASE OII ROAU	Liquius	N2O	19.40	32.71	0.05	2.33	2.33	0.00	0.00	0.00	0.01%	0.00%	0.00%
			CO ₂	2,156.27	1,646.37	0.03	0.01	0.04	0.00	0.00	0.00	0.01%	0.00%	0.00%
		Liquids	CH ₄	5.36	4.93	0.03	1.74	1.74	0.00	0.00	0.00	0.00%	0.00%	0.00%
	1A4a Commercial &	Elquido	N ₂ O	2.61	3.12	0.04	0.13	0.14	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Institutional		CO ₂	53.99	53.99	0.05	0.04	0.06	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Gas	CH ₄	0.12	0.12	0.05	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Gas		N ₂ O	0.03	0.03	0.05	0.04	0.06	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	2,085.98	1,647.73	0.05	0.04	0.06	0.00	0.00	0.01	0.02%	0.05%	0.00%
		Liquids	CH₄	4.36	3.30	0.05	1.95	1.95	0.00	0.00	0.00	0.00%	0.00%	0.00%
		•	N ₂ O	1.29	0.83	0.05	1.86	1.86	0.00	0.00	0.00	0.00%	0.00%	0.00%
	1A4b Residential		CO ₂	11.74	2.35	0.05	0.04	0.06	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Gas	CH₄	0.03	0.01	0.05	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	0.01	0.00	0.05	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	313.42	2,686.54	0.04	0.02	0.04	0.00	0.01	0.01	0.02%	0.06%	0.00%
	1A4c Agriculture	Liquids	CH₄	1.06	9.10	0.04	1.61	1.61	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	0.76	6.51	0.04	1.88	1.88	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	240.69	487.76	0.04	0.03	0.05	0.00	0.00	0.00	0.00%	0.01%	0.00%
	1A5 Non Specified	Liquids	CH₄	0.27	0.35	0.03	1.29	1.30	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	2.34	4.48	0.03	1.61	1.61	0.00	0.00	0.00	0.00%	0.00%	0.00%
	1B Fugitive Emissions	from Fuels												
	1B1 Solid Fuel	Solids	CH₄	24.73	23.75	0.05	2.00	2.00	0.00	0.00	0.00	0.01%	0.00%	0.00%
		Liquids	CO ₂	5,387.14	4,335.70	0.05	0.03	0.06	0.00	0.01	0.02	0.03%	0.12%	0.00%
			CH₄	17,012.21	10,750.91	0.05	2.33	2.33	0.01	0.05	0.04	10.93%	0.30%	1.20%
		N2O	18.45	14.85	0.05	2.33	2.33	0.00	0.00	0.00	0.01%	0.00%	0.00%	
			CO ₂	58.49	264.54	0.05	0.04	0.06	0.00	0.00	0.00	0.00%	0.01%	0.00%
		Gas	CH₄	6,565.43	7,091.00	0.05	2.00	2.00	0.00	0.01	0.03	1.27%	0.20%	0.02%
			N2O	0.16	0.87	0.00	2.00	2.00	0.00	0.00	0.00	0.00%	0.00%	0.00%

Year 2019 (4 of 5)

Sector	IPC	C category	Gas	be consisting the construction of the construc	be of the control of	% Activity data uncertainty	Emission factor % uncertainty / estimation parameter uncertainty	% Combined uncertainty	Contribution to variance by source/sink category in year t	% Type A sensitivity	% Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced % into the trend in total national emissions
IPPU		2A1 Cement production	CO ₂	7,615.98	9,120.65	0.02	0.08	0.08	0.00	0.00	0.04	0.03%	0.10%	0.00%
		2A2 Lime production	CO ₂	239.24	128.96	0.08	0.02	0.08	0.00	0.00	0.00	0.00%	0.01%	0.00%
	2A Mineral Industry	2A3 Glass production	CO ₂	28.34	340.52	0.05	0.10	0.11	0.00	0.00	0.00	0.01%	0.01%	0.00%
		2A4d Limestone and dolomite	CO ₂	178.68	494.90	0.03	0.05	0.06	0.00	0.00	0.00	0.01%	0.01%	0.00%
		2B1 Ammonia production	CO ₂	988.52	1,224.16	0.05	0.06	0.08	0.00	0.00	0.00	0.00%	0.03%	0.00%
		2B2 Nitric acid production	N ₂ O	217.09	0.00	0.02	0.40	0.40	0.00	0.00	0.00	0.05%	0.00%	0.00%
		2B5 Carbide production	CO ₂	49.49	38.02	0.05	0.10	0.11	0.00	0.00	0.00	0.00%	0.00%	0.00%
		2B8 Petrochemicals and	CO ₂	2,633.90	4,170.48	0.05	0.30	0.30	0.00	0.00	0.02	0.08%	0.12%	0.00%
		Carbon Black	CH₄	202.86	327.77	0.05	0.60	0.60	0.00	0.00	0.00	0.01%	0.01%	0.00%
		2C1 Iron and Steel	CO ₂	1,367.98	7,543.24	0.10	0.25	0.27	0.00	0.02	0.03	0.57%	0.43%	0.01%
		production	CH₄	33.73	10.26	0.10	0.25	0.27	0.00	0.00	0.00	0.00%	0.00%	0.00%
	2C Metal Industry	2.C.2 Ferroalloys Production	CO ₂	0.00	1,680.43	0.05	0.25	0.25	0.00	0.01	0.01	0.17%	0.05%	0.00%
	20 Wetai maasii y	2.C.2 i enoalloys i roduction	CH₄	0.00	13.94	0.05	0.25	0.25	0.00	0.00	0.00	0.00%	0.00%	0.00%
		2C3 Aluminium production	CO ₂	0.00	1,216.00	0.01	0.10	0.10	0.00	0.00	0.00	0.05%	0.01%	0.00%
		200 / Warrington production	PFC	0.00	2,617.44	0.01	0.10	0.10	0.00	0.01	0.01	0.10%	0.01%	0.00%
	2E Electronics Industry	2E1 Integrated Circuit or	PFC, HFC, SF _{6,} NH ₃	1,029.30	1,857.52	0.10	0.10	0.14	0.00	0.00	0.01	0.02%	0.11%	0.00%
		2E3 Photovoltaics	PFC	0.00	932.95	0.10	0.10	0.14	0.00	0.00	0.00	0.04%	0.05%	0.00%
	2F Product Uses as Substitutes for Ozone Depleting Substances	2F1b Mobile Air-Conditioning	HFC134 a	479.34	929.77	0.10	0.10	0.14	0.00	0.00	0.00	0.01%	0.05%	0.00%
	2G Other Product Manufacture and Use 2G3h N.O. in Medical	SF ₆	14.82	146.74	0.10	0.10	0.14	0.00	0.00	0.00	0.01%	0.01%	0.00%	
		N ₂ O	22.35	60.07	0.10	0.01	0.10	0.00	0.00	0.00	0.00%	0.00%	0.00%	

Year 2019 (5 of 5)

Sector	IPCC	C category	Gas	යි Base year (2005) C emissions or removals	කි Year t (2019) emissions C or removals	Activity data uncertainty	Emission factor uncertainty / estimation parameter uncertainty	Combined uncertainty	Contribution to variance by source/sink category in year t	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
				equivalent)	equivalent)	%	%	%		%	%	%	%	%
AFOLU - Agriculture		3A1 Enteric Fermentation	CH₄	1,452.12	1,224.46	0.13	0.97	0.98	0.00	0.00	0.00	0.27%	0.09%	0.00%
	3A Livestock		CH₄	506.79	539.49	0.15	0.94	0.95	0.00	0.00	0.00	0.05%	0.05%	0.00%
		3A2 Manure Management	N ₂ O	96.78	120.61	0.15	1.41	1.42	0.00	0.00	0.00	0.00%	0.01%	0.00%
		3C1b Biomass Burning In	CH₄	15.94	18.52	0.10	0.00	0.10	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Croplands 3C2 Liming		5.29	6.18	0.10	0.00	0.10	0.00	0.00	0.00	0.00%	0.00%	0.00%
				0.00	21.67	0.50	0.50	0.71	0.00	0.00	0.00	0.00%	0.01%	0.00%
	3C3 Urea application		CO ₂	575.07	389.89	0.50	0.50	0.71	0.00	0.00	0.00	0.07%	0.11%	0.00%
	3C Aggregate Sources and Non-CO2 Emissions Sources on Land	3C4 Direct N2O Emissions from managed soils	N ₂ O	3,852.49	3,736.73	1.14	1.13	1.60	0.00	0.01	0.01	0.61%	2.40%	0.06%
		3C5 Indirect N2O Emissions from managed soils	N ₂ O	1,185.79	1,053.28	0.91	0.21	0.93	0.00	0.00	0.00	0.04%	0.54%	0.00%
		3C6 Indirect N2O Emissions from manure management	N ₂ O	456.57	541.90	0.17	0.20	0.26	0.00	0.00	0.00	0.00%	0.05%	0.00%
		3C7 Rice cultivations	CH₄	2,118.20	2,268.98	0.10	0.63	0.63	0.00	0.00	0.01	0.13%	0.13%	0.00%
WASTE	4A Solid Waste Disposal	Sites	CH₄	6,096.11	11,681.20	0.52	0.35	0.63	0.00	0.01	0.05	0.51%	3.43%	0.12%
	4B Biological Treatment of	of Solid Woote	CH₄	0.01	0.24	1.54	1.00	1.84	0.00	0.00	0.00	0.00%	0.00%	0.00%
	4b biological Treatment C	oi Solid Waste	N ₂ O	0.01	0.17	1.54	1.50	2.15	0.00	0.00	0.00	0.00%	0.00%	0.00%
		4C1 Waste Incineration	CO ₂	29.61	42.09	0.10	0.70	0.71	0.00	0.00	0.00	0.00%	0.00%	0.00%
	4 C Incineration and	TO I WASIE IIICIIICIAUOII	N ₂ O	1.74	2.42	0.10	1.00	1.00	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Open Burning of Waste		CO ₂	0.77	0.68	0.55	0.66	0.85	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Spon Barring or Waste	4C2 Open Burning of Waste	CH₄	2.11	1.88	0.55	1.13	1.25	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	0.25	0.22	0.55	1.00	1.14	0.00	0.00	0.00	0.00%	0.00%	0.00%
	4 D Wastewater	4D1 Domestic Wastewater	CH₄	1,731.03	1,687.08	0.60	0.58	0.84	0.00	0.00	0.01	0.14%	0.57%	0.00%
	Treatment and Discharge)	N ₂ O	305.57	378.14	0.15	0.50	0.52	0.00	0.00	0.00	0.01%	0.03%	0.00%
	4D2 Industrial Wastewater	CH₄	13,833.55	14,462.46	0.29	0.39	0.48	0.00	0.02	0.06	0.60%	2.35%	0.06%	
	Total			250,043.80	330,358.22				0.02					0.02
							Percentage uncertainty total invent	' in	15.12%				Trend Uncertainty	12.70%

Table A – 27b: Approach 1 Uncertainty Analysis for Greenhouse Gas Inventory Year 2019 - Including LULUCF

Year 2019 (1 of 5)

Sector	IPC	CC category	Gas	Base year (2005) emissions or removals	Year t (2019) emissions or removals	Activity data uncertain ty	Emission factor uncertainty / estimation parameter uncertainty	uncertainty	Contributio n to variance by source/ sink category in year t	Type A sensitivity	Type B sensitivity	uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
				(Gg CO ₂	(Gg CO ₂ equivalent)	%	%	%		%	%	%	%	%
1. Energy				,	,									
	1A Fuel Combustion Activitie	es												
	1A1 Energy Industries													
			CO ₂	1,820.67	1,884.53	0.97%	0.92%	1.33%	0.00	0.04	0.04	0.04%	0.05%	0.00%
		Liquids	CH ₄	1.80	1.90	0.97%	226.15%	226.15%	0.00	0.00	0.00	0.01%	0.00%	0.00%
			N ₂ O	4.30	4.54	0.97%	226.86%	226.86%	0.00	0.00	0.00	0.02%	0.00%	0.00%
		Solids	CO ₂	22,279.39	73,653.01	0.69%	13.86%	13.88%	0.01	0.47	1.39	6.52%	1.36%	0.44%
	1A1a Main Activity Electricity		CH₄	5.80	19.24	0.69%	138.46%	138.47%	0.00	0.00	0.00	0.02%	0.00%	0.00%
	and Heat Production		N ₂ O	103.63	343.98	0.69%	161.79%	161.80%	0.00	0.00	0.01	0.36%	0.01%	0.00%
			CO ₂	30,969.27	33,811.76	1.00%	3.92%	4.05%	0.00	0.63	0.64	2.49%	0.90%	0.07%
		Gas	CH₄	13.80	15.07	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.06%	0.00%	0.00%
			N ₂ O	16.45	17.96	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.07%	0.00%	0.00%
		Biomass & Biogas	CH₄	17.43	6.52	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.12%	0.00%	0.00%
		Diomass & Diogas	N ₂ O	27.71	10.32	1.00%	275.00%	275.00%	0.00	0.00	0.00	0.26%	0.00%	0.00%
			CO ₂	9,936.67	8,200.82	1.00%	3.00%	3.16%	0.00	0.25	0.15	0.76%	0.22%	0.01%
	1A1b Petroleum Refining	Liquids	CH₄	10.17	8.39	1.00%	233.33%	233.34%	0.00	0.00	0.00	0.06%	0.00%	0.00%
			N ₂ O	24.24	20.00	1.00%	233.33%	233.34%	0.00	0.00	0.00	0.15%	0.00%	0.00%
	1A1c Manufacture of Solid		CO ₂	26,744.27	13,724.22	1.00%	3.92%	4.05%	0.00	0.84	0.26	3.29%	0.37%	0.11%
	Fuels and Other Energy	Gas	CH₄	11.92	6.12	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.08%	0.00%	0.00%
	Industries (LNG)		N ₂ O	14.21	7.29	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.09%	0.00%	0.00%
			CO ₂	17,297.09	8,535.30	2.38%	0.82%	2.52%	0.00	0.55	0.16	0.45%	0.54%	0.00%
		Liquids	CH ₄	16.92	8.39	3.00%	4.06%	5.05%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Stries Solids	N ₂ O	40.06	19.84	0.00%	0.00%	0.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	4 A 2 Manufaturing Industries		CO ₂	5,420.07	6,859.53	2.45%	190.47%	190.48%	0.01	0.09	0.13	17.87%	0.45%	3.19%
	1A2 Manufaturing Industries and Construction		CH ₄	14.10	17.84	3.00%	200.00%	200.02%	0.00	0.00	0.00	0.05%	0.00%	0.00%
	and Constitution		N ₂ O	25.21	31.91	0.00%	0.00%	0.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	12,480.19	18,087.71	2.47%	192.01%	192.03%	0.09	0.17	0.34	33.13%	1.19%	10.99%
		Gas	CH₄	5.56	8.06	3.00%	233.33%	233.35%	0.00	0.00	0.00	0.02%	0.00%	0.00%
		Gds	N ₂ O	6.63	9.61	0.00%	0.00%	0.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%

Year 2019 (2 of 5)

Sector	IPO	IPCC category		Base year (2005) emissions or removals	Year t (2019) emissions or removals	Activity data uncertain ty	Emission factor uncertainty / estimation parameter uncertainty		Contributio n to variance by source/ sink category in year t		Type B sensitivity	trend in national emissions introduced by emission factor / estimation parameter	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
				(Gg CO ₂ equivalent)	(Gg CO ₂ equivalent)	%	%	%		%	%	%	%	%
			CO ₂	1,202.61	1,276.23	5.00%	4.06%	6.44%	0.00	0.03	0.02	0.10%	0.17%	0.00%
	1A3a Civil Aviation	Liquids	CH₄	0.21	0.22	5.00%	233.33%	233.38%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		·	N ₂ O	10.02	10.64	5.00%	233.33%	233.38%	0.00	0.00	0.00	0.05%	0.00%	0.00%
			CO ₂	33,600.15	53,995.92	0.76%	3.69%	3.77%	0.00	0.36	1.02	1.34%	1.09%	0.03%
		Liquids	CH ₄	278.06	465.40	0.95%	221.59%	221.59%	0.00	0.00	0.01	0.59%	0.01%	0.00%
			N ₂ O	484.51	775.24	575.91%	172.54%	601.20%	0.00	0.01	0.01	0.92%	11.92%	1.43%
		Gas	CO ₂	222.99	230.03	1.00%	3.92%	4.05%	0.00	0.00	0.00	0.02%	0.01%	0.00%
	1A3b Road Transportation		CH ₄	9.14	9.43	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.04%	0.00%	0.00%
			N ₂ O	3.55	3.67	1.00%	200.00%	200.00%	0.00	0.00	0.00	0.02%	0.00%	0.00%
	1A3c Railway		CH ₄	0.00	2.03	0.95%	221.59%	221.59%	0.00	0.00	0.00	0.01%	0.00%	0.00%
		Biomass (Biodiesel)	N ₂ O	0.00	4.85	575.91%	172.54%	601.20%	0.00	0.00	0.00	0.02%	0.07%	0.00%
			CO ₂	158.12	46.69	5.00%	0.94%	5.09%	0.00	0.01	0.00	0.01%	0.01%	0.00%
		Liquids	CH ₄	0.22	0.07	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	18.19	5.37	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.15%	0.00%	0.00%
		Liquids	CO ₂	3,947.29	5,650.38	5.00%	0.94%	5.09%	0.00	0.06	0.00	0.05%	0.75%	0.01%
	1A3d Water-Borne Navigation		CH ₄	9.32	13.34	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.03%	0.00%	0.01%
	TASU Water-Borne Navigation		N ₂ O	31.74	45.45	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.03%	0.00%	0.00%
		Liquids	CO2	1,409.64	2,377.14	5.00%	5.34%	7.31%	0.00	0.00	0.00	0.11%	0.01%	0.00%
	1A3e Off Road		CH4	16.78	28.30	5.00%	233.33%	233.39%	0.00	0.00	0.04	0.04%	0.00%	0.00%
			N2O	19.40	32.71	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.04%	0.00%	0.00%
			CO ₂	2,156.27	1,646.37	3.49%	1.21%	3.70%	0.00	0.06	0.03	0.07%	0.15%	0.00%
		Liquids	CH ₄	5.36	4.93	3.75%	174%	173.59%	0.00	0.00	0.00	0.02%	0.00%	0.00%
	1A4a Commercial &		N ₂ O	2.61	3.12	4.13%	13%	13.69%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Institutional		CO ₂	53.99	53.99	5.00%	3.92%	6.35%	0.00	0.00	0.00	0.00%	0.01%	0.00%
		Gas	CH₄	0.12	0.12	5.00%	200.00%	200.06%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	0.03	0.03	5.00%	3.92%	6.35%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	2,085.98	1,647.73	4.93%	3.90%	6.29%	0.00	0.05	0.03	0.21%	0.22%	0.00%
		Liquids	CH ₄	4.36	3.30	4.87%	195.02%	195.08%	0.00	0.00	0.00	0.02%	0.00%	0.00%
		1	N ₂ O	1.29	0.83	4.65%	186.29%	186.35%	0.00	0.00	0.00	0.01%	0.00%	0.00%
	1A4b Residential		CO ₂	11.74	2.35	5.00%	3.92%	6.35%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		Gas	CH ₄	0.03	0.01	5.00%	200.00%	200.06%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			N ₂ O	0.03	0.00	5.00%	200.00%	200.06%	0.00	0.00	0.00	0.00%	0.00%	0.00%
			CO ₂	313.42	2,686.54	4.07%	1.92%	4.50%	0.00	0.04	0.05	0.07%	0.29%	0.00%
		Liquids	CH ₄	1.06	9.10	4.07%	161.16%	161.21%	0.00	0.04	0.00	0.07%	0.29%	0.00%
		Liquius	N ₂ O	0.76	6.51	4.03%	188.02%	188.06%	0.00	0.00	0.00	0.02%	0.00%	0.00%
	1AE Non Consisted	Liquido	CO ₂	240.69 0.27	487.76 0.35	3.64% 3.24%	2.77% 129.47%	4.58% 129.51%	0.00	0.00	0.01	0.00%	0.05% 0.00%	0.00% 0.00%
	1A5 Non Specified	Liquids												
			N ₂ O	2.34	4.48	3.45%	160.94%	160.98%	0.00	0.00	0.00	0.00%	0.00%	0.00%

Year 2019 (3 of 5)

Sector	IPC	C category	Gas	Base year (2005) emissions or removals	Year t (2019) emissions or removals	Activity data uncertain ty	Emission factor uncertainty / estimation parameter uncertainty		Contributio n to variance by source/ sink category in year t		Type B sensitivity	trend in trend in national emissions introduced by emission factor / estimation parameter	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
				(Gg CO ₂	(Gg CO ₂ equivalent)	%	%	%		%	%	%	%	%
	1B Fugitive Emissions from F	Fuels		cquivalent	cquivalenty									
	1B1 Solid Fuel	Solids	CH₄	24.73	23.75	5.00%	200.00%	200.06%	0.00	0.00	0.00	0.11%	0.00%	0.00%
	Liquids 1B2 Oil and Natural Gas Gas	CO ₂	5,387.14	4,335.70	5.00%	3.00%	5.83%	0.00	0.14	0.08	0.42%	0.58%	0.01%	
		Liquids	CH₄	17,012.21	10,750.91	5.00%	233.33%	233.39%	0.05	0.50	0.20	115.89%	1.44%	134.33%
			N2O	18.45	14.85	5.00%	233.33%	233.39%	0.00	0.00	0.00	0.11%	0.00%	0.00%
			CO ₂	58.49	264.54	5.00%	3.92%	6.35%	0.00	0.00	0.00	0.01%	0.04%	0.00%
		Gas	CH₄	6,565.43	7,091.00	5.00%	200.00%	200.06%	0.02	0.14	0.13	27.32%	0.95%	7.47%
			N2O	0.16	0.87	0.00%	200.00%	200.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%
2. IPPU														
		2A1 Cement production	CO ₂	7,615.98	9,120.65	2.00%	8.00%	8.25%	0.00	0.14	0.17	1.13%	0.49%	0.02%
		2A2 Lime production	CO ₂	239.24	128.96	8.00%	2.00%	8.25%	0.00	0.01	0.00	0.01%	0.03%	0.00%
	27 Civilioral Middotty	2A3 Glass production	CO ₂	28.34	340.52	5.00%	10.00%	11.18%	0.00	0.01	0.01	0.05%	0.05%	0.00%
	2A4d Limeston	2A4d Limestone and dolomite	CO ₂	178.68	494.90	3.00%	5.00%	5.83%	0.00	0.00	0.01	0.01%	0.04%	0.00%
		2B1 Ammonia production	CO ₂	988.52	1,224.16	5.00%	6.00%	7.81%	0.00	0.02	0.02	0.11%	0.16%	0.00%
		2B2 Nitric acid production	N ₂ O	217.09	0.00	2.00%	40.00%	40.05%	0.00	0.01	0.00	0.36%	0.00%	0.00%
	2B Chemical Industry	2B5 Carbide production	CO ₂	49.49	38.02	5.00%	10.00%	11.18%	0.00	0.00	0.00	0.01%	0.01%	0.00%
		2B8 Petrochemicals and Carbon Black	CO ₂	2,633.90	4,170.48	5.00%	30.00%	30.41%	0.00	0.03	0.08	0.89%	0.56%	0.01%
		200 Fetrochemicals and Carbon Black	CH₄	202.86	327.77	5.00%	60.00%	60.21%	0.00	0.00	0.01	0.13%	0.04%	0.00%
		201 Jan and Starl medication	CO ₂	1,367.98	7,543.24	10.00%	25.00%	26.93%	0.00	0.09	0.14	2.15%	2.01%	0.09%
		2C1 Iron and Steel production	CH ₄	33.73	10.26	10.00%	25.00%	26.93%	0.00	0.00	0.00	0.03%	0.00%	0.00%
	2C Metal Industry	2.C. 2.Farraellava Bradvetian	CO ₂	0.00	1,680.43	5.00%	25.00%	25.50%	0.00	0.03	0.03	0.79%	0.22%	0.01%
	2C Metal Industry	2.C.2 Ferroalloys Production	CH₄	0.00	13.94	5.00%	25.00%	25.50%	0.00	0.00	0.00	0.01%	0.00%	0.00%
		2002 Alternations and desired	CO ₂	0.00	1,216.00	1.00%	10.00%	10.05%	0.00	0.02	0.02	0.23%	0.03%	0.00%
		2C3 Aluminium production	PFC	0.00	2,617.44	1.00%	10.00%	10.05%	0.00	0.05	0.05	0.49%	0.07%	0.00%
	2E1 Integrated Circuit or 2E Electronics Industry Semiconductor	PFC, HFC, SF _{6,} NH ₃	1,029.30	1,857.52	10.00%	10.00%	14.14%	0.00	0.01	0.04	0.07%	0.50%	0.00%	
	2E3 Photovoltaics		PFC	0.00	932.95	10.00%	10.00%	14.14%	0.00	0.02	0.02	0.18%	0.25%	0.00%
	2F Product Uses as Substitutes for Ozone Depleting Substances	2F1b Mobile Air-Conditioning	HFC134a	479.34	929.77	10.00%	10.00%	14.14%	0.00	0.00	0.02	0.02%	0.25%	0.00%
	2G Other Product Manufacture	2G1 Electrical Equipment	SF ₆	14.82	146.74	10.00%	10.00%	14.14%	0.00	0.00	0.00	0.02%	0.04%	0.00%
	and Use	2G3b N ₂ O in Medical Applications	N ₂ O	22.35	60.07	10.00%	1.00%	10.05%	0.00	0.00	0.00	0.00%	0.02%	0.00%

Year 2019 (4 of 5)

Sector	IPCC category		Gas	Base year (2005) emissions or removals	Year t (2019) emissions or removals (Gg CO ₂	ĺ	parameter uncertainty	uncertainty	Contributio n to variance by source/ sink category in year t	sensitivity	Í	trend in national emissions introduced by emission factor / estimation parameter	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
					equivalent)	%	%	%		%	%	%	%	%
3. AFOLU														
	3A1 Enteric Fermentation 3A Livestock 3A2 Manuse Management	CH₄	1,452.12	1,224.46	13.23%	97.47%	98.36%	0.00	0.04	0.02	3.58%	0.43%	0.13%	
		3A2 Manure Management	CH₄	506.79	539.49	15.00%	93.81%	95.00%	0.00	0.01	0.01	1.00%	0.22%	0.01%
		one management	N ₂ O	96.78	120.61	15.00%	141.42%	142.21%	0.00	0.00	0.00	0.24%	0.05%	0.00%
	land 3.B.5.b. F	3.B.1 Forest land Remaining Forest land	Carbon Dioxide (CO2)	-215,490.65	-237,008.39	15.00%	10.00%	18.03%	0.14	4.59	4.47	45.95%	94.92%	111.21%
		3.B.5.b. Forest land converted to settlement	Carbon Dioxide (CO2)	36,437.78	35,564.03	15.00%	20.00%	25.00%	0.01	0.82	0.67	16.50%	14.24%	4.75%
	3B Land	3.B.2 Cropland Remaining Cropland	Carbon Dioxide (CO2)	-20,215.98	-18,662.58	20.00%	10.00%	22.36%	0.00	0.48	0.35	4.83%	9.97%	1.23%
		3.B.5.b Cropland converted to settlement	Carbon Dioxide (CO2)	2,192.08	5,290.91	15.00%	10.00%	18.03%	0.00	0.01	0.10	0.10%	2.12%	0.04%
		3.B.2.b Forest land converted to Cropland	Carbon Dioxide (CO2)	0.00	101.49	15.00%	20.00%	25.00%	0.00	0.00	0.00	0.04%	0.04%	0.00%
		3C1b Biomass Burning In Croplands	CH₄	15.94	18.52	10.00%	0.00%	10.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		3CTD Biomass Burning in Cropiands	N_2O	5.29	6.18	10.00%	0.00%	10.00%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		3C2 Liming	CO ₂	0.00	21.67	50.00%	50.00%	70.71%	0.00	0.00	0.00	0.02%	0.03%	0.00%
		3C3 Urea application	CO ₂	575.07	389.89	50.00%	50.00%	70.71%	0.00	0.02	0.01	0.82%	0.52%	0.01%
	CO2 Emissions Sources on	managed soils	N ₂ O	3,852.49	3,736.73	113.58%	112.85%	160.11%	0.00	0.09	0.07	9.95%	11.33%	2.27%
	Land	3C5 Indirect N2O Emissions from managed soils	N ₂ O	1,185.79	1,053.28	90.880%	21.08%	93.29%	0.00	0.03	0.02	0.61%	2.56%	0.07%
		3C6 Indirect N2O Emissions from manure management	N ₂ O	456.57	541.90	16.58%	20.00%	25.98%	0.00	0.01	0.01	0.17%	0.24%	0.00%
		3C7 Rice cultivations	CH₄	2,118.20	2,268.98	10.00%	62.50%	63.29%	0.00	0.04	0.04	2.78%	0.61%	0.08%

Year 2019 (5 of 5)

Sector	IPCI	C category	Gas	Base year (2005) emissions or removals	Year t (2019) emissions or removals	uncertain	Emission factor uncertainty / estimation parameter uncertainty	Combined	Contributio n to variance by source/ sink category in year t	Type A sensitivity	Type B sensitivity	trend in national emissions introduced by emission factor / estimation parameter	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
				(Gg CO ₂ equivalent)	(Gg CO ₂ equivalent)	%	%	%		%	%	%	%	%
4. Waste														
	4A Solid Waste Disposal Sites		CH₄	6,096.11	11,681.20	51.96%	35.00%	62.65%	0.00	0.03	0.22	1.07%	16.21%	2.64%
	4B Biological Treatment of Solid Waste		CH₄	0.01	0.24	154.00%	100.00%	183.62%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	g	75 Biological Houtmont of Golia Waste	N ₂ O	0.01	0.17	154.00%	150.00%	214.98%	0.00	0.00	0.00	0.00%	0.00%	0.00%
		4C1 Waste Incineration	CO ₂	29.61	42.09	10.00%	70.00%	70.71%	0.00	0.00	0.00	0.03%	0.01%	0.00%
	4 C Incineration and Open	401 Waste Memeration	N ₂ O	1.74	2.42	10.00%	100.00%	100.50%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Burning of Waste		CO ₂	0.77	0.68	54.77%	65.57%	85.44%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	Danning or Waste	4C2 Open Burning of Waste	CH₄	2.11	1.88	54.77%	112.69%	125.30%	0.00	0.00	0.00	0.01%	0.00%	0.00%
			N ₂ O	0.25	0.22	54.77%	100.00%	114.02%	0.00	0.00	0.00	0.00%	0.00%	0.00%
	4 D W 1 1 1	4D4 Domostic Wastowster	CH₄	1,731.03	1,687.08	60.00%	58.31%	83.67%	0.00	0.04	0.03	2.30%	2.70%	0.13%
	4 D Wastewater Treatment and Discharge	4D I Domestic Wastewater	N ₂ O	305.57	378.14	15.48%	50.00%	52.34%	0.00	0.01	0.01	0.27%	0.16%	0.00%
	Discharge	4D2 Industrial Wastewater	CH₄	13,833.55	14,462.46	28.72%	39.05%	48.48%	0.00	0.30	0.27	11.57%	11.09%	2.57%
	Total			52,967.03	115,643.68				0.33					2.83
							Percentage in total inve		57.47%				Trend Uncertainty	168.34%

Table B - 1: Details on the Methodology and Assumptions for the Quantification of Sectoral Mitigation Actions

Mitigation Action	Progress Indicators	Methodologies and Assumptions
	Energy	/ Sector
 Renewable Energy (RE) implementation through Feed-in Tariff (FiT) mechanism Large Scale Solar Net Energy Metering Hydropower Generation Other RE by public and private licensees 	Total electricity generation for each of the programmes (GWh).	Emission avoidances are quantified based on the displacement and/or reduction of the consumption of grid-electricity from RE programs. In regard to electricity consumption from the grid, calculations of GHG emission reduction in 2017, 2018 and 2019 performed throughout this report refer to three grid-electricity emission factors respectively for: • Peninsular Malaysia (0.776 tonnes CO ₂ /MWh, 0.807 tonnes CO ₂ /MWh and 0.780 tonnes CO ₂ /MWh); • Sabah (0.513 tonnes CO ₂ /MWh, 0.520 tonnes CO ₂ /MWh, and 0.527 tonnes CO ₂ /MWh, 0.193 tonnes CO ₂ /MWh and 0.222 tonnes CO ₂ /MWh).
National Energy Efficiency Action Plan (NEEAP)	Total electricity savings for each of the programmes (GWh).	Emission avoidances are quantified based on the displacement and/or reduction of the consumption of grid-electricity which is compiled by the Energy Commission. In this regard, the three grid-electricity emission factors were used for Peninsular Malaysia, Sabah and Sarawak.
Rail-based public transport	Daily ridership volumes on the LRT, Monorail and KLIA ERL	 Annual ridership and average length travelled on the LRT, Monorail, KLIA ERL and MRT networks are compiled. Modal shift assumptions of 66.5% of the ridership from cars to rail and 33.5% from motorcycles to rail.

Mitigation Action	Progress Indicators	Methodologies and Assumptions
	and MRT networks.	 The number of cars and motorcycles avoided on the road, the corresponding commuting distance and the resulting GHG emission avoidance are computed. The emission factors for passenger vehicle category used are sourced from the publication by the Department for Environment, Food and Rural Affairs (DEFRA), United Kingdom. Emissions from electricity consumption from the operations of electrified trains are quantified using grid-electricity emission factors for Peninsular Malaysia, which were subtracted from the total emission calculated from the use of rail-based transportation to calculate the net emission reduction achieved.
Use of Energy Efficient Vehicles (EEVs)	Number of EEV vehicles registered under the Road Transport Department Malaysia.	 Information on the number of registered EEV vehicles i.e. hybrid cars and electric cars are obtained from the Road Transport Department. The difference in emissions of total EEVs on the road and the corresponding categories of conventional vehicles is then computed based on fuel requirement. Default average km driven per year per passenger vehicle in Malaysia as reported by Malaysian Institute of Road Safety Research (MIROS) is used. Default vehicle emission factors for hybrid and electric vehicles as reported by Department for Environment, Food and Rural Affairs (DEFRA), United Kingdom for 2017, 2018 and 2019 are used.
Use of palm-based biodiesel in blended petroleum diesel	Nationwide biodiesel consumption	The annual GHG emissions are calculated using the amount of petroleum diesel displaced by biodiesel provided by the

Mitigation Action	Progress Indicators	Methodologies and Assumptions
	data compiled monthly and aggregated to annual amount.	Ministry of Plantation and Industrial Commodities, multiplied by the IPCC default carbon emission factor.
Use of natural gas in vehicles (NGV)	Sale and consumption of NGV in the transport sector.	 Computation of the difference in emissions between the use of natural gas in the transport sector as alternative fuels compared to the use of conventional motor gasoline. Default emission factors of fuels used are based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
Reduction of venting and flaring	Emissions reduction achievement for Vent-to-flare conversion projects, compressor reliability improvement efforts, and the enhancement of leak detection and repair (LDAR) programmes.	Annual GHG emissions reduction was published by PETRONAS in its PETRONAS Annual Report.

2
7
'n

Mitigation Action	Progress Indicators	Methodologies and Assumptions
	Waste	Sector
Paper recycling program	Annual amount of wastepaper recycled in tonnes.	Data on the amount of wastepaper recycled each year provided by the Solid Waste Management and Public Cleansing Corporation. The methane emissions avoided are calculated based on the total wastepaper recycled using the methodology described in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and IPCC default emissions factors. Methane emission is converted to CO ₂ eq using a Global Warming Potential of 25.
Biogas recovery from palm oil mill effluent (POME)	Number of palm oil mills equipped with on-site biogas capture facilities and the annual amount of biogas captured.	Data on monthly Crude Palm Oil production is reported by MPOB and aggregated to annual production value. Data on the total number of palm oil mills with biogas capture facilities and the method used to recover the biogas is monitored and recorded by MPOB. The total methane emissions captured are computed based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and specific parameter values established by MPOB through research. Methane emission is converted to CO ₂ equivalent by using the Global Warming Potential of 25.

N	
∞	
Õ	

Mitigation Action	Progress Indicators	Methodologies and Assumptions
	IPPU	Sector
Material substitution in cement production	Amount of other cementitious materials.	Data on the annual amount of other cementitious materials to replace clinker in cement production. The quantification of GHG emission reduction follows the 2006 IPCC guideline, where the amount of clinker substituted using other cementitious and alternative materials were multiplied with the emission factor for clinker calculated in the national inventory.
	Agricult	ure Sector
MyOrganic Certification Program	Area of certified farms under myOrganic program.	The estimation of emission reduction from organic farming is
	LULUC	F Sector
Reducing deforestation, Sustainable management of forest and Conservation of carbon stocks	Net-net approach	A net-net accounting approach is undertaken with 2005 as the base year

Table B - 2: Detailed Description of Mitigation Actions

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities	
Energy Sector									
1. Renewable Energy (RE) implementa- tion through Feed-in Tariff (FiT) mechanism	Generation of RE power for supply to the grid network from indigenous RE sources, namely biogas (agro-industrial waste and landfill gas), biomass (agro-waste and municipal solid waste), solar photovoltaic and small hydropower which is below 30MW.	To increase renewable energy in the fuel mix for grid electricity so as to enhance national electricity supply security and sustainable socioeconomic development.	Regulatory	Implemented	Energy – Power	CO ₂	2010	 Ministry of Energy and Natural Resources Sustainable Energy Development Authority (SEDA) 	
2. Large Scale Solar	A competitive bidding programme to drive down the Levelized Cost of Energy (LCOE) for the development of large scale solar photovoltaic plant (LSS).	To increase renewable energy in the energy generation mix.	Others: Market- based Instrument	Implemented	Energy – Power	CO ₂	2018	 Ministry of Energy and Natural Resources Energy Commission (EC) 	
3. Net Energy Metering	This programme aims to lower electricity bills for residential premises	To increase renewable energy in the	Regulatory	Implemented	Energy – Power	CO ₂	2016	 Ministry of Energy and 	

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
4. Hydropower	by using solar PV systems. Under this programme, any excess energy generated will be exported to the utility grid and will be paid on a 1:1 offset basis and the credit shall be allowed to roll over for a maximum of 12 months. To enhance energy	energy generation mix. Diversification of	Regulatory	Implemented	Energy	CO ₂		Natural Resources Energy Commission (EC) Sustainable Energy Development Authority (SEDA)
Generation	security, hydroelectric power stations was incorporated as one of the sources for grid connected electricity generation under the Four-Fuel Diversification Policy in 1981.	sources for generation of grid-connected electricity.	J.	implemented	Energy – Power			 Energy Commission (EC) Tenaga Nasional Berhad (TNB) Sabah Electricity Sdn Bhd (SESB) Sarawak Energy Berhad (SEB)
5. RE by public and private licensees	Power generation from RE resources such as biomass, biogas and solar photovoltaic by the private sector for	To promote the use of RE resources in electricity generation.	Others: Market- based Instrument	Implemented	Energy – Power	CO ₂		Energy Commission (EC)

	Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
6.	National	both on-site and off-site consumption, including supply to the grid not under the existing RE programmes such as FiT scheme and hydropower.	To increase energy	Regulatory	Implemented	Energy –	CO ₂		 Tenaga Nasional Berhad (TNB) Sabah Electricity Sdn Bhd (SESB) Sarawak Energy Berhad (SEB) Private sector Ministry of
	Energy Efficiency Action Plan (NEEAP)	programmes specified in Section 3.2.2.2 and Table B-3.	efficiency in residential, commercial and industrial sectors.	, , , , , , , , , , , , , , , , , , ,	·	Power			Energy and Natural Resources Energy Commission (EC)
7.	Rail-based public transport	Public-private sector investment in rail-based urban mass transit infrastructure in the Klang Valley in the form of the Light Rail Transit (LRT), Monorail, Mass Rapid Transit (MRT), KTM Komuter and KLIA Express Rail Link.	To expand and integrate the urban rail public transport system. To promote reduced use of private transport and demand on road infrastructure through increasing	Others: Market- based Instrument	Implemented	Energy - Transport	CO ₂		 Ministry of Transport Land Public Transport Agency (APAD) Prasarana Malaysia Bhd Express Rail Link Sdn Bhd KTM Bhd

	Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
			public rail transport modal share.						
	. Use of energy- efficient vehicles	EEVs are defined as vehicles that meet a set of defined specifications in terms of carbon emission level (g CO ₂ eq/ km) and fuel consumption (L/100 km). EEVs include fuelefficient internal combustion engine (ICE) vehicles, hybrid and electric vehicles, and alternative-fuelled vehicles.	To increase the number of on-the road EEVs in Malaysia.	Others: Market- based Instrument	Implemented	Energy - Transport	CO ₂		 Ministry of International Trade and Industry Malaysia Automotive, Robotics and IoT Institute (MARii)
9.	Use of palm- based biodiesel in blended petroleum diesel	Malaysia introduced blending of 5% palm methyl ester with 95% petroleum diesel under the B5 programme in 2011. The blending was then increased to 7% of palm methyl ester with 93% of petroleum diesel under the B7 programme for	To increase the use of palm oil-based biodiesel as a renewable clean-burning petroleum diesel replace-ment to contribute towards reducing Malaysia's dependen-ce on fossil fuel and	Regulatory	Implemented	Energy - Transport	CO ₂		Ministry of Plantation Industries and Commodities

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
10. Use of natural gas in vehicles	transportation sector in 2015. In 2019, blending for transportation sector was increased to 10% of methyl ester with 90% of petroleum diesel. Also in 2019, blending of 7% of palm methyl ester with 93% of petroleum diesel was introduced for the industrial sector. Recognising the environmental benefits of using natural gas as a fuel source, the Natural Gas for Vehicle (NGV) programme was initiated in 1986 as a pilot program and expanded in 1991 with initial focus in public transportation sector.	enhancing sustainable socio-economic development. To promote the use of compressed natural gas as an alternative fuel in automobiles for enhancing environmental quality and reducing carbon emissions.	Others: Market- based Instrument	Implemented	Energy - Transport	CO2		Economic Planning Unit, Prime Minister's Department Ministry of Finance
11. Reduction of venting and flaring	Reduction of GHG emissions by reducing hydrocarbon flaring and venting.	To reduce GHG emissions within current operations.	Others: Voluntary Initiative	Implemented	Energy - fugitive emission	CO ₂ CH ₄		PETRONAS

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
12.Paper recycling program	Sustainable waste management through recycling and utilisation of wastepaper for manufacture of paper products.	Methane avoidance through recycling of wastepaper.	Others: Market- based Instrument	Implemented	Waste	CH₄		 National Solid Waste Management Department Solid Waste Management and Public Cleansing Corporation Paper products industry
13.Biogas recovery from palm oil mill effluent (POME) treatment	Installation of biogas capture facilities in palm oil mills. Utilisation of methane recovered for energy generation or destruction through flaring. GHG emission reductions are accounted for by methane combustion/ destruction only.	To avoid the release of methane from treatment of POME through biogas capture and utilisation.	Regulatory	Implemented	Waste	CH₄		 Ministry of Plantation Industries and Commodities Malaysian Palm Oil Board (MPOB)

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other) IPPU Sector	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
14.Material substitution in cement production	The promotion of the use of low carbon cement with the use of suitable fly ash from coal-fired power plant to produce cement contributes to carbon footprint reduction.	To reduce process emission in cement production from the substitution of clinker with other cementitious materials.	Others: Voluntary Initiative	Implemented	IPPU – Mineral Industry	CO ₂		Cement industry
		A	Agriculture Sect	or				
15. MyOrganic Certification Program	A voluntary certification scheme for commercial farms, comprising of guidelines and criteria to be practiced by farm operators to promote sustainable agriculture and produce better quality organic products.	To recognize farms that practice organic farming based on Malaysian Standard MS 1529:2015 - Plant-based organically produced foods-requirements for production, processing, handling, labelling and marketing. To certify farms in the crop sector that comply with the Good Agricultural	Others: Voluntary Initiative	Implemented	Agricul- ture	CO ₂ N ₂ O	2002	 Ministry of Agriculture and Food Industries Department of Agriculture

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
		Practices and apply the standard of organic productions. It is an approach to fulfilling the commitment towards a sustainable agriculture in Malaysia. Part of the requirement of this program is the avoidance of synthetic chemicals, fertilizers and pesticides, which contributes to the reduction of GHG emissions in the agriculture practice.						
		1	LULUCF Secto					
16. Reducing deforestation, Sustainable management	Sustainable forest To promote management is sustainable forest practised in Malaysia to management and ensure that the conservation		Regulatory	Implemented	Forest	CO ₂	2006	Ministry of Energy and Natural Resources

Name	Description	Objectives	Type of instrument (regulatory, economic instrument or other)	Status (planned, adopted, or implemented)	Sector(s) affected	Gases affec- ted	Start year of implem- entation	Implementing entity or entities
of forest and Conservation of carbon stocks	complex ecosystems rich in flora and fauna are conserved, ecosystem services provided by the forest are maintained and at the same time allowing for continuity of forest product harvest.							 Ministry of Plantation Industries and Commodities State Forestry Departments

Table B - 3: Details of Key Initiatives and Programmes under NEEAP and Breakdown of its GHG Emission Reduction Achievement

Key Initiative	Programme	Description		nission Reved (Gg	
			2017	2018	2019
Initiative 1:	5-star refrigerator campaign	Promotion of 5-star rating and label for refrigerators to transform the market via more efficient models.	60.67	82.31	91.22
5-star rated appliances	5-star air conditioner campaign	Promotion of 5-star rating and label for air-conditioners to transform the market via more efficient models.	699.55	893.76	1,049.28
Initiative 2: Minimum Energy Performance	EE lighting campaign	Promotion of energy efficient lighting through awareness programmes, enforcement of MEPS and labelling.	43.62	90.00	127.85
Standards (MEPS)	High efficiency motors	Promotion and awareness programme that will lead to mandatory MEPS and labelling for motors by 2020.	2.57	8.23	14.88
Initiative 3: Energy audits	Large and medium- sized commercial buildings	Matching grants will be provided to large and medium sized industries and commercial buildings where free energy audit is offered and building owners are	48.30	111.04	165.68
and energy management in buildings and	Large and medium- sized industries	obliged to invest in energy saving measures equal or more than the amount of grant received. Meanwhile, large Government facilities will be retrofitted through	244.10	528.33	771.74
industries	Large Government facilities	allocation provided or Energy Performance Contract mechanism.	50.34	83.74	106.05
Initiative 4: Co-generation	Co-generation in industries and commercial buildings	To promote co-generation in industries and commercial buildings by implementing key strategic measures to reduce barriers.	135.03	346.85	837.98
Initiative 5: Energy Efficient Building Design	Energy Efficiency in New Buildings	Incorporating Energy Efficiency in new building designs and constructions.	NA	NA	NA

Note: *NA: Not Applicable

Table B - 4: Distribution of Clean Development Mechanism Project Activities by Project Type

Туре	Sub-type	No. of Registered Projects	% of Total Number of Projects	Annual Emission Reduction Potential (t CO ₂ eq.)	% of Total Annual Emission Reduction Potential	CERs Issued KP1 (2006 - 2012)	CERs Issued KP2 (2013 - 2021)	Total CERs Issued	Estimated Investment (mil USD)
Biomass energy	Oil palm solid biomass	31	20.81%	2,485,484.00	4.50%	4,053,859.00	943,726.00	4,997,585.00	157.17
	Agricultural residues	6	4.03%	677,780.00	1.23%	1,051,665.19	94,078.80	1,145,744.00	10.07
	Wood waste	4	2.68%	130,537.00	0.24%	-	-	-	22.87
	Gasification	1	0.67%	26,983.00	0.05%	-	-	-	-
Energy	Electronics	2	1.34%	7,786.00	0.01%	-	-	-	6.00
efficiency	Machinery	1	0.67%	173.00	0.00%	-	-	-	0.13
Hydropower	Run of river	3	2.01%	105,083.00	0.19%	42,922.00	-	42,922.00	29.26
	New dam	2	1.34%	260,421.00	0.47%	16,920.00	25,709.00	42,629.00	4.97
Landfill gas	LFG power	6	4.03%	586,488.00	1.06%	740,194.00	3,184,151.00	3,924,345.00	24.25
	LFG flaring	3	2.01%	360,707.00	0.65%	12,623.00	-	12,623.00	1.20
CH₄ avoidance	Palm oil mill effluent	24	16.11%	983,950.00	1.78%	31,244.89	208,421.11	239,666.00	7.05
	Composting	27	18.12%	753,426.00	1.36%	202,534.00	673.00	203,207.00	37.83
	Wastewater	34	22.82%	47,668,628.91	86.33%	1,363,836.00	-	1,363,836.00	47.67
EE supply side	Single to combined cycle	1	0.67%	595,460.00	1.08%	1,326,055.00	-	1,326,055.00	104.79
Fuel switch	New NG plant	1	0.67%	299,832.00	0.54%	8,325.60	468,731.41	477,057.00	-
Geothermal	Geothermal electricity	1	0.67%	269,026.00	0.49%	-	-	-	-
Transport efficient	Efficient vehicle	2	1.34%	3,156.00	0.01%	25.04	1,552.96	1,578.00	-
To	otal	149	100.00%	55,214,920.91	100.00%	8,850,203.72	4,927,043.28	13,777,247.00	453.26

Table B - 5: Distribution of Voluntary Carbon Market Project Activities by Project Type

Project Type	No. of Projects	Project Estimate of Annual ERs (t CO2 eq.)	Total VCUs Issued	Total VCUs Retired	Balance Issued VCUs in the VCS Registry
CH₄ avoidance	8	217,714			
Biomass energy	1	21,660			
Hydropower	2	45,219	10,692		
Reforestation	1	138,013	509,540	509,540	-
Total	12	422,606			

UNITS

°C degree Celsius cm centimetre

CO₂ eq. carbon dioxide equivalent

g gram
Gg Gigagram
GWh Gigawatt hour

ha hectare
hr hour
kg kilogram
km kilometre

km² square kilometre

kt kilo tonne

ktoe kilo tonne of oil equivalent

kWh kilowatt hour

m metre

m³ cubic metre mm millimetre Mt million tonne

Mtoe million tonne of oil equivalent

MW megawatt
MWh megawatt hour
PJ Peta Joule

RM Ringgit Malaysia (Malaysian Ringgit)

t tonne

TJ Tera Joule

toe tonnes of oil equivalent

yr year

CHEMICAL ELEMENTS

С Carbon Κ Potassium Ν Nitrogen Ρ Phosphorous

GASES

CO carbon monoxide CO_2 carbon dioxide CH₄ methane

HFCs hydrofluorocarbons NF_3 nitrogen trifluoride

 N_2O nitrous oxide

non-methane volatile organic compounds **NMVOCs**

NOx nitrogen oxide **PFC** perfluorocarbon SF₆ sulphur hexafluoride SO_2 sulphur dioxide

CONVERSION TABLE

1 tonne $= 10^3 \text{ kg}$ $= 10^6 g$ $= 10^6 \text{ kg}$ $= 10^9 \, g$ 1 k tonne = 1 Gg $= 10^{12} g$ $= 10^3 \, \text{Gg}$ $= 10^9 \text{ kg}$ 1 M tonne

 1 km^2 = 100 ha

1 TJ $= 10^{12}$ Joules

1 PJ = 10¹⁵ Joules $= 10^3 \, TJ$

LIST OF ACRONYMS

AFOLU Agriculture, Forestry and Other Land Use

AMB Ambitious

APAD Land Public Transport Agency
AR4 Fourth Assessment Report

ASEAN Association of Southeast Asian Nations

ASM Academy of Sciences Malaysia

ATF Authorised Treatment Facility Framework

BAU Business as Usual

BHC British High Commission
BUR Biennial Update Report

BUR2 Second Biennial Update Report
BUR3 Third Biennial Update Report
BUR4 Fourth Biennial Update Report

B5 A blend of 5% palm-based fatty acid methyl ester and 95% petroleum

diesel

B7 A blend of 7% palm-based fatty acid methyl ester and 93% petroleum

diesel

CBOs Community-based Organisations
CDM Clean Development Mechanism
CER Certified Emission Reductions

CFS Central Forest Spine

CGEs Consultative Group of Experts
CHP Combined Heat and Power

CIDB Construction Industry Development Board

CNCA Cement and Concrete Association

CNG Compressed natural gas
CPAs Component Project Activities
CSEF Country-specific Emission Factor

DEFRA Department for Environment, Food and Rural Affairs

DID Department of Irrigation and Drainage

DoA Department of Agriculture
DoF Department of Fisheries
DOM Dead Organic Matter

DOE Department of Environment

DOSM Department of Statistics Malaysia

DRR Disaster Risk Reduction

DVS Department of Veterinary Services
EACG Energy Audit Conditional Grant

EAF Electric Arc Furnace

EBT Energy Balance Table EC Energy Commission

ECBI European Capacity Building Initiative

EEVs Energy Efficient Vehicles

EF Emission Factors

EPC Energy Performance Contract

EPU Economic Planning Unit (under the Prime Minister's Department)

ERL Express Rail Link

ESCO Energy Service Companies

ETS Electric Train Service

EV Electric Vehicle

FAOSTAT Food and Agriculture Organization Statistics

FiT Feed-in-Tariff

FRIM Forest Research Institute of Malaysia

GBI Green Building Index
GCF Green Climate Fund
GDP Gross Domestic Product
GEF Global Environmental Facility
GGP Government Green Procurement

GHG Greenhouse gas

GITA Green Investment Tax Allowance
GITE Green Income Tax Exemption

GIZ German Agency for International Cooperation

GLAD Global LCA Data Access
GNI Gross National Income

Green PASS Green Performance Assessment System
GTFS Green Technology Financing Scheme

GWP Global warming potential

HoB Heart of Borneo

ICE Internal combustion engine

IFAD International Fund for Agricultural Development

IKI International Climate Initiative IMR Institute for Medical Research

IPCC Intergovernmental Panel on Climate Change

IPPU Industrial Processes and Product Use
IRDA Iskandar Regional Development Authority

ISIC International Standard Industrial Classification of All Economic Activities

IWK Indah Water KonsortiumJCM Joint Credit Mechanism

JICA Japan International Cooperation Agency

JMG Minerals and Geoscience Department (Jabatan Mineral dan Geosains)

JPP Sewage Services Department

JPSPN National Solid Waste Management Department (Jabatan Pengurusan

Sisa Pepejal Negera)

KASA Kementerian Alam Sekitar dan Air (Ministry of Environment and Water)
KeTSA Kementerian Tenaga dan Sumber Asli (Ministry of Energy and Natural

Resources)

KPDNHEP Kementerian Perdagangan Dalam Negeri dan Hal Ehwal Pengguna

Malaysia (Ministry of Domestic Trade and Consumer Affairs)

KTM Keretapi Tanah Melayu LCA Life-cycle Assessment

LCCF Low Carbon Cities Framework
LCID Life Cycle Inventory Database
LCOE Levelized Cost of Energy

LDAR Leak Detection and Repair

LKIM Lembaga Kemajuan Ikan Malaysia (Fisheries Development Authority of

Malaysia)

LRT Light Rail Transit
LSS Large-Scale Solar

LULUCF Land Use, Land Use Change and Forestry

MAA Malaysian Automotive Association

MABDR Malaysia Automotive Bumiputra Development Roadmap

MAFI Ministry of Agriculture and Food Industries
MAHR Malaysia Automotive Human Capital Roadmap
MARii Malaysia Automotive, Robotics and IoT Institute

MARDI Malaysia Agriculture Research and Development Institute

MARR Malaysia Automotive Remanufacturing Roadmap

MASCR Malaysia Automotive Supply Chain Development Roadmap

MATR Malaysia Automotive Technology Roadmap

MCB Malayan Cement Berhad MCB Malaysian Cocoa Board

MDSES Malaysia Distributed Solar and Energy Storage

MESTECC Ministry of Energy, Science, Technology, Environment and Climate

Change

MetMalaysia Malaysian Meteorological Department
MEPS Minimum Energy Performance Standards
MGTC Malaysian Green Technology Corporation
MHLG Ministry of Housing and Local Government

MIGHT Malaysian Industry-Government Group for High Technology

MIROS Malaysian Institute of Road Safety Research
MISIF Malaysian Iron and Steel Industry Federation
MITI Ministry of International Trade and Industry

MOH Ministry of Health

MOSTI Ministry of Science, Technology & Innovation

MOT Ministry of Transport

MMU Minimum Mapping Unit

MNRE Ministry of Natural Resources and Environment

MNHP Malaysia National Health Policy

MPIC Ministry of Plantation Industries and Commodities

MPOB Malaysian Palm Oil Board
MRB Malaysian Rubber Board
MRT Mass Rapid Transit

MRV Measurement, Reporting and Verification

MSA Malaysia Steel Association

MSIG Malaysian Sewarage Industry Guidelines

MWIG Malaysia Water Industry Guide MWA Malaysian Water Associations

MyCAC Malaysia Climate Change Action Council

MyCREST Malaysian Carbon Reduction and Environmental Sustainability Tool

MyHIJAU Malaysia Green Technologies Tax Incentives Scheme

MyOrganic Malaysia Organic Certification Scheme NADMA National Disaster Management Agency

NAHRIM National Hydraulic Research Institute of Malaysia

NAP National Automotive Policy NC National Communication

NC2 Second National CommunicationNC3 Third National CommunicationNDC Nationally Determined Contribution

NEB National Energy Balance

NEEAP National Energy Efficiency Action Plan

NEM Net-energy Metering NEP Net Energy Policy

NKTB National Kenaf and Tobacco Board

NPP-3 National Physical Plan-3

NGOs Non-governmental Organisations

NGV Natural Gas Vehicle

NIES National Institute for Environmental Studies (Japan)

NMVOCs Non-methane volatile organic compounds

NRPP 2030 National Rural Physical Plan 2030

NSCCC National Steering Committee on Climate Change NSCREDD National Steering Committee on REDD plus

NUP-2 Second National Urbanisation Policy

PA Protected Area

PETRONAS Petroleum Nasional Bhd (National Petroleum Limited)

PFCs Perfluorocarbons

PoAs Programme of Activities
POME Palm Oil Mill Effluent

PRFs Permanent Reserved Forests

PV **Photovoltaic**

QA **Quality Assurance** QC **Quality Control**

R&D Research and Development

RE Renewable Energy

REDD plus Reducing Emissions from Deforestation and Forest Degradation, and

the Role of Conservation, Sustainable Management of Forests and

Enhancement of Forest Carbon Stocks in Developing Countries

SBST Stage Bus Service Transformation

Sabah Development Corridor SDC

SEB Sarawak Energy Berhad

Southeast Asia Disaster Prevention Research Initiative SEADPRI

SEDA Sustainable Energy Development Authority

SEDIA Sabah Economic Development and Investment Authority

SESB Sabah Electricity Sdn Bhd

SIRIM Standard and Industrial Research Institute of Malaysia

SLF State Land Forests

SMEs Small and Medium Enterprises

SME Corp Small and Medium Enterprise Corporation **SPAN National Water Services Commission**

SSD

Sewerage Services Department STI Science, Technology and Innovation

Solid Waste and Public Cleansing Management Corporation SW Corp

SWG/SWGs Sub-Working Group/ Sub-Working Groups **TCCC** Technical Committee on Climate Change TDM Malaysian Army (Tentera Darat Malaysia)

TNB Tenaga Nasional Berhad TOR Terms of Reference

TPA **Totally Protected Area**

Royal Malaysian Air Force (Tentera Udara Diraja Malaysia) TUDM

TWG/TWGs Technical Working Group/Technical Working Groups

UKM Universiti Kebangsaan Malaysia (National University of Malaysia)

UNDP United Nations Development Programme **UNEP** United Nations Environment Programme

UNFCCC United Nations Framework Convention on Climate Change

UNIDO United Nations Industrial Development Organisation

UNITEN Universiti Tenaga Nasional

USEPA United States Environmental Protection Agency

V&A Vulnerability and Adaptation VCS Verified Carbon Standard **VCUs** Verified Carbon Units

WGIA Workshops on GHG Inventories in Asia

ACKNOWLEDGEMENTS

The completion of Malaysia's Fourth Biennial Update Report was made possible with the contributions, knowledge and expertise of many local scientists, experts and individuals from various governmental agencies, research organisations, non-governmental organisations, universities and industry organisations. Various consultative meetings and workshops have been conducted in support of the Technical Working Groups and thematic Sub-Working Groups. The final report was sent to the relevant Ministries, Agencies, Industry Organisation, Academia and NGOs for their review and comments. An editorial team was also set up to consider the entire report before its finalisation.

The invaluable contributions and endless support from all the stakeholders as well as the lead and participating Agencies, Ministries, contributors, and stakeholders as listed below are kindly acknowledged.

Advisers

Dato' Seri Ir. Dr. Zaini Ujang	KASA
Ms. Noor Afifah Abdul Razak	KASA
Dr. Sugumari Shanmugam	KASA
Dr. Hartini Mohd Nasir	KASA
Mr. Ahmad Farid Bin Mohammed	KASA
Mr. Asfaazam Kasbani	UNDP
Ms. Gan Pek Chuan	UNDP

Editors

Dato' Dr. Yap Kok Seng

Dr. Elizabeth Philip

Ms. Dayang Ratnasari Abu Bakar

Ms. Hilary Chiew Cheng Geok

Dr. Mohd Arif Misrol

Ms. Rafidah Hasbullah

Mr. Mohamad Firdaus Nawawi

Ms. Nur Hazirah Che Ithnin

Ms. Wan Nurlaila Yusra Mat Desa

Ms. Wan Nur Syuhada Wan Ata

Ms. Nor Amalina Mohd Adib

GHG INVENTORY

Lead Ministry

Ministry of Environment and Water

Sector Lead Agencies and Members

Department of Environment (Waste Sector)

Energy Commission (Energy Sector)

Forest Research Institute Malaysia (LULUCF Sector)

Institute of Energy Policy and Research, Universiti Tenaga Nasional (Energy and IPPU sectors)

Malaysia Agriculture Research and Development Institute (Agriculture Sector)

Ministry of International Trade and Industry (IPPU Sector)

Contributors and Data Providers

ABB Holdings Sdn. Bhd.

Air Asia Sdn. Bhd.

Air Asia X Sdn. Bhd.

AmSteel Mills Sdn. Bhd.

Aneka Karya Jaya Sdn. Bhd.

Angkatan Tentera Diraja Malaysia

Aniza Textile and Fashion

Ann Joo Steel Berhad

Beautiful House Textile

Chevron

Construction Industry Development Board Malaysia

Department of Agriculture

Department of Agriculture Sabah

Department of Agriculture Sarawak

Department of Civil Aviation Malaysia

Department of Marine

Department of Mineral and Geosciences

Department of Road Transport

Department of Statistics Malaysia

Department of Town and Country Planning

Department of Veterinary Services

Department of Wildlife and National Parks Peninsular Malaysia

DK Leather Seats Sdn Bhd

Double A International Network (Malaysia) Sdn. Bhd.

Eastern Steel Sdn. Bhd.

Energy Commission

Esso

Euli Textile Trading Sdn. Bhd.

Fire and Rescue Department Malaysia

Forest Research Institute Malaysia

Forestry Department of Peninsular Malaysia

Golden Globe Cigarette Manufacturing Sdn. Bhd.

Gunung Seraya Wood Products Sdn. Bhd.

Hitachi Construction Machinery (Malaysia) Sdn. Bhd.

House of Leather Sdn. Bhd.

Indah Water Konsortium Sdn. Bhd.

Institute of Climate Change, Universiti Kebangsaan Malaysia

Integrated Agricultural Development Area

Jabatan Hasil Bumi, Sabah

Jabatan Laut Malaysia

Jabatan Mineral dan Geosains Sarawak

JT International Tobacco Sdn. Bhd.

Kemubu Agricultural Development Authority

Keretapi Tanah Melayu (KTMB)

KL Airport Services Sdn. Bhd.

Land and Survey Department, Sarawak

Linde (M) Sdn Bhd

Lotte Titan Chemicals Sdn. Bhd.

Machinery and Equipment Manufacturers Association

Malaysia Airlines, Firefly, Mas Wings, Mas Kargo

Malaysia Airports (Sepang) Sdn. Bhd.

Malaysia Airports Holdings Berhad

Malaysia Automotive Institute

Malaysia Palm Oil Board

Malaysia Sheet Glass (M) Sdn. Bhd.

Malaysia Steel Association

Malaysia Steel Works

Malaysian Agricultural Research and Development Institute

Malaysian Automotive Association

Malaysian Cement and Concrete Association

Malaysian Chambers of Mines

Malaysian Cocoa Board

Malaysian Cocoa Board

Malaysian Industrial Development Authority

Malaysian Institute of Road Safety Research

Malaysian Iron and Steel Federation

Malaysian Newsprint Industries

Malaysian Palm Oil Board

Malaysian Pineapple Industry Board

Malaysian Rubber Board

Malaysian Space Agency

Malaysian Textile Manufacturers Association

MCB Industries Sdn. Bhd.

Ministry of Agriculture and Food Industries

Ministry of Domestic Trade and Consumer Affairs

Ministry of Energy and Natural Resources

Ministry of Housing and Local Government

Ministry of Local Government and Housing Sabah

Ministry of Natural Resources and Urban Development Sarawak

Ministry of Plantation Industries and Commodities

Ministry of Public Health, Housing and Local Government Sarawak

Ministry of Transport

Monument Mining Limited

Muda Agricultural Development Authority

National Water Services Commission

Natural Resources and Environment Board, Sarawak

Newton Leather Industries Sdn. Bhd.

Om Material Sdn Bhd

P.T Sampoerna JL Sdn. Bhd

Pertama Ferroalloy Sdn. Bhd.

PETRONAS

Philip Morris Malaysia Sdn. Bhd.

Ramsmark Tobacco Company Sdn. Bhd.

Rbm Building Machinery Trading Sdn. Bhd.

Sabah Electricity Sdn. Bhd.

Sabah Forestry Department

Sabah Parks

Sabah State Railways

Sakura Ferralloy Sdn. Bhd.

Sarawak Economic Planning Unit

Sarawak Energy Berhad

Sarawak Forestry Department

SC Wooden Products Manufacturing Sdn. Bhd.

Sewerage Services Department

Sewerage Services Department Sabah

Sewerage Services Department Sarawak

SGS (Malaysia) Sdn. Bhd.

Shell

Solutionpack Machinery (Malaysia) Sdn. Bhd.

Southern Steel

Subang Sky Park. Sdn. Bhd.

Tenaga Nasional Berhad

Tobacco Imports and Manufacturer Sdn. Bhd.

Universiti Putra Malaysia

Woodlandor Wood Products Sdn. Bhd.

MITIGATION

Lead Ministry

Ministry of Environment and Water

Sector Lead Agencies and Members

Centre for Environment, Technology and Development, Malaysia

Department of Environment

Department of Town and Country Planning

Economic Planning Unit, Prime Minister's Department (Energy Division, Macroeconomics Division, and Environmental and Natural Resources Division)

Energy Commission

Institute of Energy Policy and Research, Universiti Tenaga Nasional

Iskandar Regional Development Authority

Malaysian Agriculture Research and Development Institute

Malaysian Green Technology and Climate Change Corporation

Malaysian Meteorological Department

Melaka Green Technology Corporation

Ministry of Agriculture and Food Industries

Ministry of Energy and Natural Resources

Ministry of Housing and Local Government

Ministry of International Trade and Industry

Ministry of Plantation Industries and Commodities

Ministry of Transport

National Solid Waste Management Department

Sabah State Economic Planning Unit

Sarawak Economic Planning Unit

SIRIM Berhad

Sustainable Energy Development Authority Malaysia

Contributors

Civil Aviation Authority of Malaysia

Department of Agriculture (Peninsular Malaysia, Sabah and Sarawak)

Department of Environment

Department of Survey and Mapping

Department of Town and Country Planning

Department of Veterinary Services

Department of Wildlife and National Parks

Economic Planning Unit, Prime Minister's Department

Energy Commission

Environment Protection Department Sabah

Forest Department Peninsular Malaysia

Green Building Index Sdn Bhd

Indah Water Konsortium Sdn Bhd

Land Public Transport Commission

Malaysia Automotive Institute

Malaysia Investment Development Authority

Malaysian Cocoa Board

Malaysian Institute of Road Safety Research

Malaysian Palm Oil Board

Malaysian Timber Industry Board

Marine Department Malaysia

Melaka Green Technology Corporation

Ministry of Domestic Trade and Consumer Affairs

Ministry of Energy and Environmental Sustainability Sarawak

Ministry of Finance

Ministry of Local Government and Housing Sabah

Ministry of Public Health, Housing and Local Government Sarawak

Ministry of Utilities Sarawak

National Landscape Department

National Solid Waste Management Department

Natural Resources and Environmental Board Sarawak

PETRONAS

Sabah Electricity Sdn Bhd

Sabah Forest Department

Sabah Parks

Sabah Wildlife Department

Sarawak Energy Berhad

Sarawak Forest Department

Sarawak Forestry Corporation

Sewerage Service Department

Single Buyer

SME Corporation Malaysia

Solid Waste and Public Cleansing Management Corporation

State Governments

TNB Research Sdn. Bhd.

Universiti Kebangsaan Malaysia

TRANSPARENCY RELATED ACTIVITIES

Lead Ministry

Ministry of Environment and Water

Members (Energy)

Ministry of Energy and Natural Resources

Ministry of Transport

Economic Planning Unit, Prime Minister's Department

Ministry of Plantation Industries and Commodities

Energy Commission

Sabah State Economic Planning Unit

Ministry of Energy and Environmental Sustainability Sarawak

Sabah Electricity Sdn Bhd

Sarawak Energy Berhad

Single Buyer

Technical Committee on Climate Change (TCCC)

Deputy Secretary-General (Environment), Ministry of Environment and Water (Chair)

Climate Change Division, Ministry of Environment and Water (Secretariat)

Economic Planning Unit, Prime Minister's Department

Forest Research Institute Malaysia

Ministry of Energy and Natural Resources

Ministry of Finance

Malaysia Meteorological Department

National Water Research Institute of Malaysia

National Steering Committee on Climate Change (NSCCC)

Secretary General Ministry of Environment and Water (Chair)

Climate Change Division, Ministry of Environment and Water (Secretariat)

Ministry of Finance

Ministry of Foreign Affairs

Ministry of Energy and Natural Resources

Ministry of Transport

Ministry of Housing and Local Government

Ministry of International Trade and Industry

Ministry of Agriculture and Food Industries

Ministry of Science, Technology and Innovation

Ministry of Plantation Industries and Commodities

Ministry of Women, Family and Community Development

Ministry of Works

Economic Planning Unit, Prime Minister's Department

Attorney General Chambers

Department of Environment

National Hydraulic Research Institute of Malaysia

Malaysian Meteorological Department

Forest Research Institute Malaysia

National Disaster Management Agency

Department of Town and Country Planning

Malaysian Green Technology and Climate Change Corporation

Southeast Asia Disaster Prevention Research Institute

Centre for Environment, Technology and Development, Malaysia

Malaysia Nature Society

Environmental Protection Society Malaysia

WWF Malaysia